Abstract
We study the long time dynamics of the Schrödinger equation on Zoll manifolds. We establish criteria under which the solutions of the Schrödinger equation can or cannot concentrate on a given closed geodesic. As an application, we derive some results on the set of semiclassical measures for eigenfunctions of Schrödinger operators: we prove that adding a potential \({V \in C^{\infty} (\mathbb{S}^{d})}\) to the Laplacian on the sphere results in the existence of geodesics \({\gamma}\) such that the uniform measure supported on \({\gamma}\) cannot be obtained as a weak-\({\star}\) accumulation point of the densities \({(|\psi_{n}|^{2} {vol}_{\mathbb{S}^d})}\) for any sequence of eigenfunctions \({(\psi_n)}\) of \({\Delta_{\mathbb{S}^{d}} - V}\). We also show that the same phenomenon occurs for the free Laplacian on certain Zoll surfaces.
Similar content being viewed by others
References
Anantharaman N., Fermanian-Kammerer C., Macià F.: Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures. Am. J. Math. 137, 577–638 (2015)
Anantharaman N., Macià F.: Semiclassical measures for the Schrödinger equation on the torus. JEMS 16, 1253–1288 (2014)
Azagra D., Macià F.: Concentration of symmetric eigenfunctions. Nonlinear Anal. 73, 683–688 (2010)
Besse A.: Manifolds All of Whose Geodesics Are Closed, Ergeb. Math., vol. 93. Springer, New York (1978)
Bialy M.L., Polterovich L.V.: Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom. Invent. Math. 97, 291–303 (1989)
Bolte J., Schwaibold T.: Stability of wave packet dynamics under perturbations. Phys. Rev. E73, 026223 (2006)
Brooks, S., Le Masson, E., Lindenstrauss, E.: Quantum ergodicity and averaging operators on the sphere. arXiv:1505.03887 (2015)
Chazarain J.: Spectre d’un hamiltonien quantique et mécanique classique. CPDE 6, 595–644 (1980)
Colin de Verdière Y.: Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques. Comment. Math. Helv. 54, 508–522 (1979)
Combescure M., Robert D.: A phase-space study of the quantum Loschmidt Echo in the semiclassical limit. Ann. H. Poincaré 8, 91–108 (2007)
Diestel, J., Uhl, J.J.: Vector measures. Mathematical Surveys, vol. 15. American Mathematical Society, Providence (1977)
Dimassi, M., Sjöstrand, J.: Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Series, vol. 268. Cambridge University Press, Cambridge (1999)
Duistermaat J.J.: On global action-angle coordinates. Commun. Pure Appl. Math. 33, 687–706 (1980)
Duistermaat J.J., Guillemin V.: The spectrum of elliptic operators and periodic bicharacteristics. Invent. Math. 29, 39–79 (1975)
Einsiedler M., Ward T.: Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, vol. 259. Springer, London (2011)
Eswarathasan, S., Rivière, G.: Perturbation of the semiclassical Schrödinger equation on negatively curved surfaces. J. Inst. Math. Jussieu (2015). http://dx.doi.org/10.1017/S1474748015000262
Gérard, P.: Mesures semi-classiques et ondes de Bloch, Sem. EDP (Polytechnique) 1990–1991, Exp. 16 (1991)
Gérard P.: Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var. 3, 213–233 (1998)
Gorin T., Prosen T., Seligman T.H., Zdinaric M.: Dynamics of Loschmidt echoes and fidelity decay. Phys. Rep. 435, 33–156 (2006)
Goussev, A., Jalabert, R.A., Pastawski, H.M., Wisniacki, D.: Loschmidt echo. Scholarpedia 7(8), 11687. arXiv:1206.6348 (2012)
Gromoll, D., Grove, K.: On metrics on \({{\mathbb{S}^{2}}}\) all of whose geodesics are closed. Invent. Math. 65, 175–177 (1981/1982)
Guillemin V.: The Radon transform on Zoll surfaces. Adv. Math. 22, 85–119 (1976)
Guillemin V.: Some spectral results for the Laplace operator with potential on the n-sphere. Adv. Math. 27, 273–286 (1978)
Guillemin V.: Some spectral results on rank one symmetric spaces. Adv. Math. 28, 129–137 (1978)
Guillemin V.: Band asymptotics in 2 dimension. Adv. Math. 42, 248–282 (1981)
Hall, M.A., Hitrik, M., Sjöstrand, J.: Spectra for semiclassical operators with periodic bicharacteristics in dimension two. Int. Math. Res. Notices. 2015 10243–10277 (2015)
Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Helffer B., Robert D.: Puits de potentiel généralisés et asymptotique semi-classique. Ann. Inst. H. Poincaré Phys. Théor. 41, 291–331 (1984)
Helgason S.: Integral Geometry and Radon Transforms. Springer, New York (2011)
Hitrik M.: Eigenfrequencies for damped wave equations on Zoll manifolds. Asymptot. Anal. 31, 265–277 (2002)
Hitrik M., Sjöstrand J.: Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions I. Ann. H. Poincaré 5, 1–73 (2004)
Hörmander L.: The Analysis of Linear Partial Differential Operators III. Springer, Berlin (1985)
Hörmander L.: The Analysis of Linear Partial Differential Operators IV. Springer, Berlin (1985)
Jacquod P., Petitjean C.: Decoherence, entanglement and irreversibility in quantum dynamical systems with few degrees of freedom. Adv. Phys. 58, 67–196 (2009)
Jakobson, D., Zelditch, S.: Classical limits of eigenfunctions for some completely integrable systems, Emerging applications of number theory (Minneapolis, MN, 1996), pp. 329–354, IMA Math. Appl., vol. 109. Springer, New York (1999)
Küster, B., Ramacher, P.: Quantum ergodicity and symmetry reduction. arXiv:1410.1096 (2014)
Macià F.: Some remarks on quantum limits on Zoll manifolds. CPDE 33, 1137–1146 (2008)
Macià F.: Semiclassical measures and the Schrödinger flow on Riemannian manifolds. Nonlinearity 22, 1003–1020 (2009)
Macià, F., Rivière, G.: Semiclassical measures for the perturbed Schrödinger equation on \({{\mathbb{T}^{d}}}\) (2015, in preparation)
Moser, J., Zehnder, E.: Notes on dynamical systems, Courant Lecture Notes in Mathematics, vol. 12. American Mathematical Society, Providence (2005)
Ojeda-Valencia D., Villegas-Blas C.: Limiting Eigenvalue Distributions Theorems in Semiclassical 1203 Analysis, Spectral Analysis of Quantum Hamiltonians: Spectral Days. Springer, Berlin (2010)
Paternáin G.P.: Geodesic Flows, Progress in Mathematics, vol. 180. Birkhäuser Boston Inc., Boston (1999)
Peres A.: Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30, 1610–1615 (1984)
Rivière, G.: Long time dynamics of the perturbed Schrödinger equation on negatively curved surfaces. Ann. H. Poincaré. arXiv:1412.4400 (2014)
Ruggiero, R.O.: Dynamics and global geometry of manifolds without conjugate points. Ensaios Mat., vol. 12, Soc. Bras. Mat. (2007)
Schwartz L.: Théorie des distributions. Hermann, Paris (1966)
Uribe A.: Some spectral results on rank one symmetric spaces. Adv. Math. 58, 285–299 (1985)
Uribe A., Zelditch S.: Spectral statistics on Zoll surfaces. Commun. Math. Phys. 154, 313–346 (1993)
VanderKam J.M.: \({L^{\infty}}\) norms and quantum ergodicity on the sphere. IMRN 7, 329–347 (1997)
Weber, J.: J-holomorphic curves in cotangent bundles and the heat flow, Ph.D. thesis/Dissertation, TU Berlin (1999)
Weinstein A.: Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math. J. 44, 883–892 (1977)
Zelditch S.: Quantum ergodicity on the sphere. Commun. Math. Phys. 146, 61–71 (1994)
Zelditch S.: Maximally degenerate Laplacians. Ann. Inst. Fourier 46, 547–587 (1996)
Zelditch S.: Fine structure of Zoll spectra. J. Funct. Anal. 143, 415–460 (1997)
Zelditch, S.: Gaussian beams on Zollmanifolds andmaximally degenerate Laplacians. In: Spectral theory and partial differential equations. ContemporaryMathematics, vol. 640. American Mathematical Society, Providence, RI (2015)
Zworski M.: Semiclassical Analysis, Graduate Studies in Mathematics, vol. 138. AMS, Providence (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by S. Zelditch
FM takes part in the visiting faculty program of ICMAT and is partially supported by grants ERC Starting Grant 277778 and MTM2013-41780-P (MEC).
GR is partially supported by the Agence Nationale de la Recherche through the Labex CEMPI (ANR-11-LABX-0007-01) and the ANR project GeRaSic (ANR-13-BS01- 0007-01).
Rights and permissions
About this article
Cite this article
Macià, F., Rivière, G. Concentration and Non-Concentration for the Schrödinger Evolution on Zoll Manifolds. Commun. Math. Phys. 345, 1019–1054 (2016). https://doi.org/10.1007/s00220-015-2504-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-015-2504-8