Skip to main content
Log in

Satisfiability Threshold for Random Regular nae-sat

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the random regular k-nae- sat problem with n variables, each appearing in exactly d clauses. For all k exceeding an absolute constant \({{\it k}_0}\), we establish explicitly the satisfiability threshold \({{{d_\star} \equiv {d_\star(k)}}}\). We prove that for \({{d < d_\star}}\) the problem is satisfiable with high probability, while for \({{d > d_\star}}\) the problem is unsatisfiable with high probability. If the threshold \({{d_\star}}\) lands exactly on an integer, we show that the problem is satisfiable with probability bounded away from both zero and one. This is the first result to locate the exact satisfiability threshold in a random constraint satisfaction problem exhibiting the condensation phenomenon identified by Krz̧akała et al. [Proc Natl Acad Sci 104(25):10318–10323, 2007]. Our proof verifies the one-step replica symmetry breaking formalism for this model. We expect our methods to be applicable to a broad range of random constraint satisfaction problems and combinatorial problems on random graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., Chtcherba, A., Istrate, G., Moore, C.: The phase transition in 1-in-k-sat and nae- 3- sat. In: Proceedings of 12th SODA, SODA’01, pp. 721–722. Society for Industrial and Applied Mathematics, Philadelphia (2001).

  2. Aurell, E., Gordon, U., Kirkpatrick, S.: Comparing beliefs, surveys, and random walks. In: NIPS (2004)

  3. Aldous D., Lyons R.: Processes on unimodular random networks. Electron. J. Probab. 12(54), 1454–1508 (2007)

    MATH  MathSciNet  Google Scholar 

  4. Achlioptas D., Moore C.: Random k-sat: two moments suffice to cross a sharp threshold. SIAM J. Comput. 36(3), 740–762 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Achlioptas, D., Peres, Y.: The threshold for random k-sat is 2k log 2 – O(k). J. Am. Math. Soc. 17(4), 947–973 (2004)

  6. Bollobás B., Borgs C., Chayes J.T., Kim J.H., Wilson D.B.: The scaling window of the 2-sat transition. Random Struct. Algorithms 18(3), 201–256 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Braunstein A., Mézard M., Zecchina R.: Survey propagation: an algorithm for satisfiability. Random Struct. Algorithms 27(2), 201–226 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benjamini I., Schramm O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 1–13 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Braunstein A., Zecchina R.: Survey propagation as local equilibrium equations. J. Stat. Mech. Theory E 2004(06), P06007 (2004)

    Article  MATH  Google Scholar 

  10. Castellani T., Napolano V., Ricci-Tersenghi F., Zecchina R.: Bicolouring random hypergraphs. J. Phys. A 36(43), 11037–11053 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Coja-Oghlan, A.: Random regular k-sat (2013). arXiv:1310.2728v1. (Preprint)

  12. Coja-Oghlan, A.: The asymptotic k-sat threshold. In: Proceedings of 46th STOC (2014)

  13. Coja-Oghlan, A., Panagiotou, K.: Catching the k-naesat threshold. In: Proceedings of 44th STOC, pp. 899–907. ACM, New York (2012)

  14. Coja-Oghlan, A., Panagiotou, K.: Going after the k-sat threshold. In: Proceedings of 45th STOC, pp. 705–714. ACM, New York (2013)

  15. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings of 33rd FOCS, pp. 620–627 (1992)

  16. Coja-Oghlan, A., Zdeborová, L.: The condensation transition in random hypergraph 2-coloring. In: Proceedings of 23rd SODA, pp. 241–250. SIAM (2012)

  17. Davis B., McDonald D.: An elementary proof of the local central limit theorem. J. Theor. Probab. 8(3), 693–701 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dall’Asta, L., Ramezanpour, A., Zecchina, R.: Entropy landscape and non-Gibbs solutions in constraint satisfaction problems. Phys. Rev. E (3) 77(3), 031118, 16 (2008)

  19. Ding, J., Sly, A., Sun, N.: Maximum independent sets on random regular graphs (2013). arXiv:1310.4787. (Preprint)

  20. Ding, J., Sly, A., Sun, N.: Satisfiability threshold for random regular nae-sat. In: Proceedings of 46th STOC. ACM, New York (2014)

  21. Fernandezde la Vega W.: Random 2-sat: results and problems. Theor. Comput. Sci. 265(1), 131–146 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goerdt A.: A threshold for unsatisfiability. J. Comput. Syst. Sci. 53(3), 469–486 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Galanis, A., Štefankovič, D., and Vigoda, E.: Inapproximability for antiferromagnetic spin systems in the tree non-uniqueness region. In: Proceedings of 46th STOC (2014)

  24. Janson, S., Łuczak, T., Rucinski, A.: Random graphs. In: Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)

  25. Kirousis L.M., Kranakis E., Krizanc D., Stamatiou Y.C.: Approximating the unsatisfiability threshold of random formulas. Random Struct. Algorithms 12(3), 253–269 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Krz̧akała F., Montanari A., Ricci-Tersenghi F., Semerjian G., Zdeborová L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. 104(25), 10318–10323 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Mézard, M., and Montanari, A.: Information, physics, and computation. In: Oxford Graduate Texts. Oxford University Press, Oxford (2009)

  28. Maneva, E., Mossel, E., Wainwright, M.J.: A new look at survey propagation and its generalizations. J. ACM 54(4):Art. 17, 41 (2007)

  29. Mézard M., Parisi G.: Replicas and optimization. J. Phys. Lett. 46(17), 771–778 (1985)

    Article  Google Scholar 

  30. Mézard M., Parisi G., Zecchina R.: Analytic and algorithmic solution of random satisfiability problems. Science 297(5582), 812–815 (2002)

    Article  ADS  Google Scholar 

  31. Montanari A., Ricci-Tersenghi F., Semerjian G.: Clusters of solutions and replica symmetry breaking in random k-satisfiability. J. Stat. Mech. Theory E 2008(04), P04004 (2008)

    Article  Google Scholar 

  32. Mézard M., Ricci-Tersenghi F., Zecchina R.: Two solutions to diluted p-spin models and xorsat problems. J. Stat. Phys. 111(3-4), 505–533 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Maneva E., Sinclair A.: On the satisfiability threshold and clustering of solutions of random 3-sat formulas. Theor. Comput. Sci. 407(1-3), 359–369 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Monasson R., Zecchina R., Kirkpatrick S., Selman B., Troyansky L.: Determining computational complexity from characteristic “phase transitions”. Nature 400(6740), 133–137 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Parisi, G.: On local equilibrium equations for clustering states (2002). arXiv:cs/0212047v2. (Preprint)

  36. Pittel, B., Sorkin, G.B.: The satisfiability threshold for k-xorsat (2012). arXiv:1212.1905v2. (Preprint)

  37. Robinson R.W., Wormald N.C.: Almost all cubic graphs are Hamiltonian. Random Struct. Algorithms 3(2), 117–125 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  38. Robinson R.W., Wormald N.C.: Almost all regular graphs are Hamiltonian. Random Struct. Algorithms 5(2), 363–374 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wormald N.C.: Models of random regular graphs. In: Surveys in Combinatorics, 1999 (Canterbury) London Math. Soc. Lecture Note Ser., vol. 267, pp. 239–298. Cambridge Univ. Press, Cambridge (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nike Sun.

Additional information

Communicated by F. Toninelli

Research supported by J. Ding: NSF Grant DMS-1313596; A. Sly: Sloan Research Fellowship; N. Sun: NDSEG and NSF GRF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Sly, A. & Sun, N. Satisfiability Threshold for Random Regular nae-sat . Commun. Math. Phys. 341, 435–489 (2016). https://doi.org/10.1007/s00220-015-2492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2492-8

Keywords

Navigation