Advertisement

Communications in Mathematical Physics

, Volume 341, Issue 2, pp 435–489 | Cite as

Satisfiability Threshold for Random Regular nae-sat

  • Jian Ding
  • Allan Sly
  • Nike Sun
Article

Abstract

We consider the random regular k-nae- sat problem with n variables, each appearing in exactly d clauses. For all k exceeding an absolute constant \({{\it k}_0}\), we establish explicitly the satisfiability threshold \({{{d_\star} \equiv {d_\star(k)}}}\). We prove that for \({{d < d_\star}}\) the problem is satisfiable with high probability, while for \({{d > d_\star}}\) the problem is unsatisfiable with high probability. If the threshold \({{d_\star}}\) lands exactly on an integer, we show that the problem is satisfiable with probability bounded away from both zero and one. This is the first result to locate the exact satisfiability threshold in a random constraint satisfaction problem exhibiting the condensation phenomenon identified by Krz̧akała et al. [Proc Natl Acad Sci 104(25):10318–10323, 2007]. Our proof verifies the one-step replica symmetry breaking formalism for this model. We expect our methods to be applicable to a broad range of random constraint satisfaction problems and combinatorial problems on random graphs.

Keywords

Partition Function Free Variable Gibbs Measure Empirical Measure Incoming Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACIM01.
    Achlioptas, D., Chtcherba, A., Istrate, G., Moore, C.: The phase transition in 1-in-k-sat and nae- 3- sat. In: Proceedings of 12th SODA, SODA’01, pp. 721–722. Society for Industrial and Applied Mathematics, Philadelphia (2001).Google Scholar
  2. AGK04.
    Aurell, E., Gordon, U., Kirkpatrick, S.: Comparing beliefs, surveys, and random walks. In: NIPS (2004)Google Scholar
  3. AL07.
    Aldous D., Lyons R.: Processes on unimodular random networks. Electron. J. Probab. 12(54), 1454–1508 (2007)zbMATHMathSciNetGoogle Scholar
  4. AM06.
    Achlioptas D., Moore C.: Random k-sat: two moments suffice to cross a sharp threshold. SIAM J. Comput. 36(3), 740–762 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  5. AP04.
    Achlioptas, D., Peres, Y.: The threshold for random k-sat is 2k log 2 – O(k). J. Am. Math. Soc. 17(4), 947–973 (2004)Google Scholar
  6. BBC+01.
    Bollobás B., Borgs C., Chayes J.T., Kim J.H., Wilson D.B.: The scaling window of the 2-sat transition. Random Struct. Algorithms 18(3), 201–256 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. BMZ05.
    Braunstein A., Mézard M., Zecchina R.: Survey propagation: an algorithm for satisfiability. Random Struct. Algorithms 27(2), 201–226 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. BS01.
    Benjamini I., Schramm O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 1–13 (2001)MathSciNetzbMATHGoogle Scholar
  9. BZ04.
    Braunstein A., Zecchina R.: Survey propagation as local equilibrium equations. J. Stat. Mech. Theory E 2004(06), P06007 (2004)CrossRefzbMATHGoogle Scholar
  10. CNRZ03.
    Castellani T., Napolano V., Ricci-Tersenghi F., Zecchina R.: Bicolouring random hypergraphs. J. Phys. A 36(43), 11037–11053 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. Coj13.
    Coja-Oghlan, A.: Random regular k-sat (2013). arXiv:1310.2728v1. (Preprint)
  12. Coj14.
    Coja-Oghlan, A.: The asymptotic k-sat threshold. In: Proceedings of 46th STOC (2014)Google Scholar
  13. CP12.
    Coja-Oghlan, A., Panagiotou, K.: Catching the k-naesat threshold. In: Proceedings of 44th STOC, pp. 899–907. ACM, New York (2012)Google Scholar
  14. CP13.
    Coja-Oghlan, A., Panagiotou, K.: Going after the k-sat threshold. In: Proceedings of 45th STOC, pp. 705–714. ACM, New York (2013)Google Scholar
  15. CR92.
    Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings of 33rd FOCS, pp. 620–627 (1992)Google Scholar
  16. CZ12.
    Coja-Oghlan, A., Zdeborová, L.: The condensation transition in random hypergraph 2-coloring. In: Proceedings of 23rd SODA, pp. 241–250. SIAM (2012)Google Scholar
  17. DM95.
    Davis B., McDonald D.: An elementary proof of the local central limit theorem. J. Theor. Probab. 8(3), 693–701 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  18. DRZ08.
    Dall’Asta, L., Ramezanpour, A., Zecchina, R.: Entropy landscape and non-Gibbs solutions in constraint satisfaction problems. Phys. Rev. E (3) 77(3), 031118, 16 (2008)Google Scholar
  19. DSS13.
    Ding, J., Sly, A., Sun, N.: Maximum independent sets on random regular graphs (2013). arXiv:1310.4787. (Preprint)
  20. DSS14.
    Ding, J., Sly, A., Sun, N.: Satisfiability threshold for random regular nae-sat. In: Proceedings of 46th STOC. ACM, New York (2014)Google Scholar
  21. FdlV01.
    Fernandezde la Vega W.: Random 2-sat: results and problems. Theor. Comput. Sci. 265(1), 131–146 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Goe96.
    Goerdt A.: A threshold for unsatisfiability. J. Comput. Syst. Sci. 53(3), 469–486 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  23. GŠV14.
    Galanis, A., Štefankovič, D., and Vigoda, E.: Inapproximability for antiferromagnetic spin systems in the tree non-uniqueness region. In: Proceedings of 46th STOC (2014)Google Scholar
  24. J£R00.
    Janson, S., Łuczak, T., Rucinski, A.: Random graphs. In: Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)Google Scholar
  25. KKKS98.
    Kirousis L.M., Kranakis E., Krizanc D., Stamatiou Y.C.: Approximating the unsatisfiability threshold of random formulas. Random Struct. Algorithms 12(3), 253–269 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  26. KMR+07.
    Krz̧akała F., Montanari A., Ricci-Tersenghi F., Semerjian G., Zdeborová L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. 104(25), 10318–10323 (2007)MathSciNetCrossRefADSzbMATHGoogle Scholar
  27. MM09.
    Mézard, M., and Montanari, A.: Information, physics, and computation. In: Oxford Graduate Texts. Oxford University Press, Oxford (2009)Google Scholar
  28. MMW07.
    Maneva, E., Mossel, E., Wainwright, M.J.: A new look at survey propagation and its generalizations. J. ACM 54(4):Art. 17, 41 (2007)Google Scholar
  29. MP85.
    Mézard M., Parisi G.: Replicas and optimization. J. Phys. Lett. 46(17), 771–778 (1985)CrossRefGoogle Scholar
  30. MPZ02.
    Mézard M., Parisi G., Zecchina R.: Analytic and algorithmic solution of random satisfiability problems. Science 297(5582), 812–815 (2002)CrossRefADSGoogle Scholar
  31. MRS08.
    Montanari A., Ricci-Tersenghi F., Semerjian G.: Clusters of solutions and replica symmetry breaking in random k-satisfiability. J. Stat. Mech. Theory E 2008(04), P04004 (2008)CrossRefGoogle Scholar
  32. MRTZ03.
    Mézard M., Ricci-Tersenghi F., Zecchina R.: Two solutions to diluted p-spin models and xorsat problems. J. Stat. Phys. 111(3-4), 505–533 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  33. MS08.
    Maneva E., Sinclair A.: On the satisfiability threshold and clustering of solutions of random 3-sat formulas. Theor. Comput. Sci. 407(1-3), 359–369 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  34. MZK+99.
    Monasson R., Zecchina R., Kirkpatrick S., Selman B., Troyansky L.: Determining computational complexity from characteristic “phase transitions”. Nature 400(6740), 133–137 (1999)MathSciNetCrossRefADSzbMATHGoogle Scholar
  35. Par02.
    Parisi, G.: On local equilibrium equations for clustering states (2002). arXiv:cs/0212047v2. (Preprint)
  36. PS12.
    Pittel, B., Sorkin, G.B.: The satisfiability threshold for k-xorsat (2012). arXiv:1212.1905v2. (Preprint)
  37. RW92.
    Robinson R.W., Wormald N.C.: Almost all cubic graphs are Hamiltonian. Random Struct. Algorithms 3(2), 117–125 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  38. RW94.
    Robinson R.W., Wormald N.C.: Almost all regular graphs are Hamiltonian. Random Struct. Algorithms 5(2), 363–374 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  39. Wor99.
    Wormald N.C.: Models of random regular graphs. In: Surveys in Combinatorics, 1999 (Canterbury) London Math. Soc. Lecture Note Ser., vol. 267, pp. 239–298. Cambridge Univ. Press, Cambridge (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of ChicagoChicagoUSA
  2. 2.Department of StatisticsUniversity of California, BerkeleyBerkeleyUSA
  3. 3.Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia
  4. 4.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations