Communications in Mathematical Physics

, Volume 345, Issue 2, pp 659–673 | Cite as

On Transport Properties of Isotropic Quasiperiodic XY Spin Chains

Article

Abstract

We consider isotropic XY spin chains whose magnetic potentials are quasiperiodic and the effective one-particle Hamiltonians have absolutely continuous spectra. For a wide class of such XY spin chains, we obtain lower bounds on their Lieb–Robinson velocities \({\mathfrak{v}}\) in terms of group velocities of their effective Hamiltonians:
$$\mathfrak{v}{\geqslant} {\mathop {\rm ess sup}_{[0,1]}}\frac{2}{\pi}\frac{dE}{dN}.$$
where E is considered as a function of the integrated density of states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asch J., Knauf A.: Motion in periodic potentials. Nonlinearity 11, 175–200 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aubry, S., André, G.: Analyticity breaking and Anderson localization in incommensurate lattices. In: Group Theoretical Methods in Physics, vol. 3, pp. 133–164. (Proceedings of Eighth International Colloquium, Kiryat Anavim, 1979). Annals of the Israel Physical Society, Hilger (1980)Google Scholar
  3. 3.
    Avila A., Krikorian R.: Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. Math. 164, 911–940 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Avila A., Fayad B., Krikorian R.: A KAM scheme for \({{\rm SL}(2,\mathbb{R})}\) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21, 1001–1019 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bourgain J., Jitomirskaya S.: Absolutely continuous spectrum for 1D quasiperiodic operators. Invent. Math. 148, 453–463 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chapman J., Stolz G.: Localization for random block operators related to the XY spin chain. Ann. Henri Poincaré 16(2), 405–435 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Damanik, D.: Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications. Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, pp. 539–563. In: Proceedings of the Symposium on Pure Mathematics, vol. 76, Part 2. American Mathematical Society, Providence (2007)Google Scholar
  8. 8.
    Damanik, D., Lukic, M., Yessen, W.: Quantum dynamics of periodic and limit-periodic Jacobi and block Jacobi matrices with application to some quantum many body problems. Commun. Math. Phys. 337(3), 1535–1561 (2015)Google Scholar
  9. 9.
    Damanik, D., Lemm, M., Lukic, M., Yessen, W.: On anomalous Lieb–Robinson bounds for the Fibonacci XY chain. J. Spectr. Theory. arXiv:1407.4924v1
  10. 10.
    Delyon F., Souillard B.: The rotation number for finite difference operators and its properties. Commun. Math. Phys. 89(3), 415–426 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Eliasson L.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146(3), 447–482 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gordon A., Jitomirskaya S., Last Y., Simon B.: Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math. 178, 169–183 (1997)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hamza E., Sims R., Stolz G.: Dynamical localization in disordered quantum spin systems. Commun. Math. Phys. 315(1), 215–239 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jitomirskaya, S., Kachkovskiy, I.: L 2-reducibility and localization for quasiperiodic operators. Math. Res. Lett. arXiv:1505.07149
  15. 15.
    Johnson R., Moser J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Last Y.: Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 42, 406–445 (1996)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lieb E., Robinson D.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Nachtergaele, B., Sims, R.: Locality estimates for quantum spin systems. In: Siboravičius, V. (ed.) New Trends of Mathematical Physics. Selected Contributions of the XVth International Congress on Mathematical Physics, pp. 591–614. Springer, Berlin (2009)Google Scholar
  19. 19.
    Reed M., Simon B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1972)MATHGoogle Scholar
  20. 20.
    Sims, R., Stolz, G.: Many-body localization: concepts and simple models (preprint). arXiv:1312.0577v1

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of California IrvineIrvineUSA

Personalised recommendations