Skip to main content
Log in

Quantum Weighted Projective and Lens Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We generalize to quantum weighted projective spaces in any dimension previous results of us on K-theory and K-homology of quantum projective spaces ‘tout court’. For a class of such spaces, we explicitly construct families of Fredholm modules, both bounded and unbounded (that is, spectral triples), and prove that they are linearly independent in the K-homology of the corresponding C *-algebra. We also show that the quantum weighted projective spaces are base spaces of quantum principal circle bundles whose total spaces are quantum lens spaces. We construct finitely generated projective modules associated with the principal bundles and pair them with the Fredholm modules, thus proving their non-triviality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al Amrani A.: Complex K-theory of weighted projective spaces. J. Pure Appl. Algebra 93, 113–127 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arici, F., Brain, S., Landi, G.: The Gysin sequence for quantum lens spaces. J. Noncomm. Geom. (2015, in press). arXiv:1401.6788 [math.QA]

  3. Arici, F., Kaad, J., Landi, G.: Pimsner algebras and Gysin sequences from principal circle actions. J. Noncomm. Geom. (2015, in press). arXiv:1409.5335 [math.QA]

  4. Bahri A., Franz M., Notbohm D., Ray N.: The classification of weighted projective spaces. Fund. Math. 220, 217–226 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blau M., Thompson G.: Chern–Simons theory on Seifert 3-manifolds. JHEP 09, 033 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  6. Brzeziński T., Fairfax S.A.: Quantum teardrops. Commun. Math. Phys. 316, 151–170 (2012)

    Article  MATH  ADS  Google Scholar 

  7. Brzeziński, T., Majid, S.: Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157, 591–638 (1993) [Erratum 167, 235 (1995)]

  8. D’Andrea F., Dabrowski L., Landi G., Wagner E.: Dirac operators on all Podles quantum spheres. J. Noncommut. Geom. 1, 213–239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. D’Andrea, F., Dabrowski, L., Landi, G.: The noncommutative geometry of the quantum projective plane. Rev. Math. Phys. 20, 979–1006 (2008)

  10. D’Andrea F., Dabrowski L.: Dirac operators on quantum projective spaces. Commun. Math. Phys. 295, 731–790 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. D’Andrea F., Landi G.: Bounded and unbounded Fredholm modules for quantum projective spaces. J. K-theory 6, 231–240 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hajac P.M.: Strong connections on quantum principal bundles. Commun. Math. Phys. 182, 579–617 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Hawkins E., Landi G.: Fredholm modules for quantum Euclidean spheres. J. Geom. Phys. 49, 272–293 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Hong J.H., Szymański W.: Quantum lens spaces and graph algebras. Pac. J. Math. 211, 249–263 (2003)

    Article  MATH  Google Scholar 

  15. Kadison R.V., Ringrose J.R.: Fundamentals of the Theory of Operator Algebras, vol. II. Academic Press, New York (1986)

    Google Scholar 

  16. Nastasescu C., Van Oystaeyen F.: Graded Ring Theory. Elsevier, Amsterdam (1982)

    MATH  Google Scholar 

  17. Thurston W.P.: The Geometry and Topology of Three-Manifolds. Princeton University Press, Princeton (1980)

    Google Scholar 

  18. Vaksman L., Soibelman Ya.: The algebra of functions on the quantum group SU(n + 1) and odd-dimensional quantum spheres. Leningrad Math. J. 2, 1023–1042 (1991)

    MathSciNet  Google Scholar 

  19. Welk, M.: Differential calculus on quantum projective spaces. In: Quantum Groups and Integrable Systems (Prague, 2000). Czech. J. Phys. 50, 219–224 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco D’Andrea.

Additional information

Communicated by Y. Kawahigashi

Dedicated to Marc Rieffel on the occasion of his 75th birthday

This work was partially supported by the Italian Project “Prin 2010-11—Operator Algebras, Noncommutative Geometry and Applications”. F.D. was partially supported by UniNA and Compagnia di San Paolo under the Program STAR 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Andrea, F., Landi, G. Quantum Weighted Projective and Lens Spaces. Commun. Math. Phys. 340, 325–353 (2015). https://doi.org/10.1007/s00220-015-2450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2450-5

Keywords

Navigation