Skip to main content
Log in

Classification of “Quaternionic" Bloch-Bundles

Topological Quantum Systems of Type AII

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide a classification of type AII topological quantum systems in dimension d = 1, 2, 3, 4. Our analysis is based on the construction of a topological invariant, the FKMM-invariant, which completely classifies “Quaternionic" vector bundles (a.k.a. “symplectic" vector bundles) in dimension \({d\leqslant 3}\). This invariant takes value in a proper equivariant cohomology theory and, in the case of examples of physical interest, it reproduces the familiar Fu–Kane–Mele index. In the case d = 4 the classification requires a combined use of the FKMM-invariant and the second Chern class. Among the other things, we prove that the FKMM-invariant is a bona fide characteristic class for the category of “Quaternionic" vector bundles in the sense that it can be realized as the pullback of a universal topological invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Bott R.: On the periodicity theorem for complex vector bundles. Acta Math. 112, 229–247 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allday C., Puppe V.: Cohomological methods in transformation groups. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  3. Avila J.C., Schulz-Baldes H., Villegas-Blas C.: Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geom. 16, 137–170 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atiyah M.F.: K-theory and reality. Quart. J. Math. Oxford Ser. (2) 17, 367–386 (1966)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Atiyah M.F.: K-theory. W. A. Benjamin, New York (1967)

    Google Scholar 

  6. Altland A., Zirnbauer M.: Non-standard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997)

    Article  ADS  Google Scholar 

  7. Biswas I., Huisman J., Hurtubise J.: The moduli space of stable vector bundles over a real algebraic curve. Math. Ann. 347, 201–233 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borel, A.: Seminar on transformation groups with contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Ann. Math. Stud. vol. 46, Princeton University Press, Princeton (1960)

  9. De Nittis G., Gomi K.: Classification of “Real" Bloch-bundles: topological quantum systems of type AI. J. Geom. Phys. 86, 303–338 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  10. De Nittis, G., Gomi, K.: Differential geometric invariants for time-reversal symmetric Bloch-bundles: the “Real" case. arXiv:1502.01232 (2015)

  11. De Nittis, G., Gomi, K.: Differential geometric invariants for time-reversal symmetric Bloch-bundles: the “Quaternionic" case (in preparation)

  12. Davis, J.F., Kirk, P.: Lecture notes in algebraic topology. AMS, Providence (2001)

  13. De Nittis G., Lein M.: Topological polarization in graphene-like systems. J. Phys. A 46, 385001 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  14. Dos Santos P.F., Lima-Filho P.: Quaternionic algebraic cycles and reality. Trans. Am. Math. Soc. 356, 4701–4736 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dupont J.L.: Symplectic bundles and KR-theory. Math. Scand. 24, 27–30 (1969)

    MathSciNet  MATH  Google Scholar 

  16. Edelson A.L.: Real vector bundles and spaces with free involutions. Trans. Am. Math. Soc. 157, 179–188 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Essin A.M., Moore J.E., Vanderbilt D.: Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009)

    Article  ADS  Google Scholar 

  18. Fu L., Kane C.L.: Time reversal polarization and a \({\mathbb{Z}_2}\) adiabatic spin pump. Phys. Rev. B 74, 195312 (2006)

    Article  ADS  Google Scholar 

  19. Fu L., Kane C.L., Mele E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  20. Furuta, M., Kametani, Y., Matsue, H., Minami, N.: Stable-homotopy Seiberg-Witten invariants and Pin bordisms. UTMS Preprint Series 2000, UTMS 2000-46 (2000)

  21. Griffiths P., Harris J.: Principles of algebraic geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  22. Gomi K.: A variant of K-theory and topological T-duality for real circle bundles. Commun. Math. Phys. 334, 923–975 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  23. Graf G.M., Porta M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324, 851–895 (2013)

  24. Hatcher A.: Algebraic topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  25. Hughes T.L., Prodan E., Bernevig B.A.: Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011)

    Article  ADS  Google Scholar 

  26. Hsiang W.Y.: Cohomology theory of topological transformation groups. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  27. Husemoller D.: Fibre bundles. Springer, New York (1994)

    Book  Google Scholar 

  28. Kahn B.: Construction de classes de Chern équivariantes pour un fibré vectoriel Réel. Commun. Algebra. 15, 695–711 (1987)

    MathSciNet  MATH  Google Scholar 

  29. Karoubi M.: K-theory. An introduction. Springer, New York (1978)

    MATH  Google Scholar 

  30. Kane C.L., Mele E.J.: Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  31. Kane C.L., Mele E.J.: \({\mathbb{Z}_2}\) topological order and the quantum spin hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  32. Kitaev A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  33. Luke G., Mishchenko A.S: Vector bundles and their applications. Kluwer Academic Publishers, Dordrecht (1998)

    Book  MATH  Google Scholar 

  34. Lawson H.B. Jr, Lima-Filho P., Michelsohn M.-L.: Algebraic cycles and the classical groups. Part II: quaternionic cycles. Geom. Topol. 9, 1187–1220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lin H., Yau S.-T.: On exotic sphere fibrations, topological phases, and edge states in physical systems. Int. J. Mod. Phys. B 27, 1350107 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  36. Matumoto T.: On G-CW complexes and a theorem of J. H. C. Whitehead. J. Fac. Sci. Univ. Tokyo 18, 363–374 (1971)

    MathSciNet  MATH  Google Scholar 

  37. Moore J.E., Balents L.: Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007)

    Article  ADS  Google Scholar 

  38. Maciejko J., Hughes T.L., Zhang S.-C.: The quantum spin hall effect. Annu. Rev. Condens. Matter Phys. 2, 31–53 (2011)

    Article  ADS  Google Scholar 

  39. Milnor J., Stasheff J.D.: Characteristic classes. Princeton University Press, Princeton (1974)

    MATH  Google Scholar 

  40. Roy R.: Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B 79, 195322 (2009)

    Article  ADS  Google Scholar 

  41. Seymour R.M.: The real K-theory of Lie groups and homogeneous spaces. Quart. J. Math. Oxford 24, 7–30 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schnyder A.P., Ryu S., Furusaki A., Ludwig A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008)

    Article  ADS  Google Scholar 

  43. Vaisman I.: Exotic characteristic classes of quaternionic bundles. Israel J. Math. 69, 46–58 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe De Nittis.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Nittis, G., Gomi, K. Classification of “Quaternionic" Bloch-Bundles. Commun. Math. Phys. 339, 1–55 (2015). https://doi.org/10.1007/s00220-015-2390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2390-0

Keywords

Navigation