Abstract
Open quantum systems weakly coupled to the environment are modeled by completely positive, trace preserving semigroups of linear maps. The generators of such evolutions are called Lindbladians. In the setting of quantum many-body systems on a lattice it is natural to consider Lindbladians that decompose into a sum of local interactions with decreasing strength with respect to the size of their support. For both practical and theoretical reasons, it is crucial to estimate the impact that perturbations in the generating Lindbladian, arising as noise or errors, can have on the evolution. These local perturbations are potentially unbounded, but constrained to respect the underlying lattice structure. We show that even for polynomially decaying errors in the Lindbladian, local observables and correlation functions are stable if the unperturbed Lindbladian has a unique fixed point and a mixing time that scales logarithmically with the system size. The proof relies on Lieb–Robinson bounds, which describe a finite group velocity for propagation of information in local systems. As a main example, we prove that classical Glauber dynamics is stable under local perturbations, including perturbations in the transition rates, which may not preserve detailed balance.
Similar content being viewed by others
References
Alicki R., Horodecki M., Horodecki P., Horodecki R.: On thermal stability of topological qubit in Kitaev’s 4d model. Open Syst. Inf. Dyn. 17(01), 1–20 (2010). doi:10.1142/S1230161210000023
Araki H., Sewell G.L.: Kms conditions and local thermodynamical stability of quantum lattice systems. Commun. Math. Phys. 52(2), 103–109 (1977)
Aspuru-Guzik A., Walther P.: Photonic quantum simulators. Nat. Phys. 8(4), 285–291 (2012)
Augusiak R., Cucchietti F.M., Haake F., Lewenstein M.: Quantum kinetic Ising models. New J. Phys. 12(2), 025021 (2010). doi:10.1088/1367-2630/12/2/025021
Barreiro J.T., Schindler P., Gühne O., Monz T., Chwalla M., Roos C.F., Hennrich M., Blatt R. :Experimental multiparticle entanglement dynamics induced by decoherence. Nat. Phys. 6, 943–946 (2010). doi:10.1038/nphys1781
Barthel T., Kliesch M.: Quasilocality and efficient simulation of Markovian quantum dynamics. Phys. Rev. Lett. 108(23), 230–504 (2012)
Blatt R., Roos C.: Quantum simulations with trapped ions. Nat. Phys. 8(4), 277–284 (2012)
Bloch I., Dalibard J., Nascimbène S.: Quantum simulations with ultracold quantum gases. Nat. Phys. 8(4), 267–276 (2012)
Bodineau T., Zegarlinski B.: Hypercontractivity via spectral theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3(01), 15–31 (2000)
Bravyi S., Hastings M.B., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 5(9), 093512 (2010). doi:10.1063/1.3490195
Briegel H., Browne D., Dür W., Raussendorf R., Van den Nest M.: Measurement-based quantum computation. Nat. Phys. 5(1), 19–26 (2009)
Dennis E., Kitaev A., Landahl A., Preskill J.: Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002). doi:10.1063/1.1499754
Duan L.M., Monroe C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010). doi:10.1103/RevModPhys.82.1209
Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. Science 292(5516), 472–475 (2001). doi:10.1126/science.1057726
Gorini V., Kossakowski A., Sudarshan E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821–825 (1976)
Gross L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)
Gross, L.: Logarithmic Sobolev inequalities and contractivity properties of semigroups. In: Dirichlet Forms (Varenna, 1992). Lecture Notes in Math., vol. 1563, pp. 54–88. Springer, Berlin (1993). doi:10.1007/BFb0074091
Gross, L.: Hypercontractivity, logarithmic Sobolev inequalities, and applications: a survey of surveys. In: Diffusion, Quantum Theory, and Radically Elementary Mathematics. Math. Notes, vol. 47, pp. 45–73. Princeton Univ. Press, Princeton (2006)
Haah J.: Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 83(4), 042330 (2011). doi:10.1103/PhysRevA.83.042330
Hammerer K., Sørensen A.S., Polzik E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010). doi:10.1103/RevModPhys.82.1041
Hastings M.B.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69, 104–431 (2004). doi:10.1103/PhysRevB.69.104431
Hastings M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp. 2007(08), P08024 (2007)
Hastings, M.B.: Locality in quantum systems (2010). arXiv:1008.5137
Hastings M.B., Koma T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006). doi:10.1007/s00220-006-0030-4
Hastings M.B., Wen X.G.: Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005). doi:10.1103/PhysRevB.72.045141
Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. In: Quantum Computers, Algorithms Chaos. Proc. Internat. School Phys. Enrico Fermi, vol. 162, pp. 115–218. IOS, Amsterdam (2006)
Holley, R.: Possible rates of convergence in finite range, attractive spin systems. In: Particle Systems, Random Media and Large Deviations (Brunswick, Maine, 1984). Contemp. Math., vol. 41, pp. 215–234. Am. Math. Soc., Providence (1985). doi:10.1090/conm/041/814713
Houck A.A., Türeci H.E., Koch J.: On-chip quantum simulation with superconducting circuits. Nat. Phys. 8(4), 292–299 (2012)
Johnston N., Kribs D.W., Paulsen V.I.: Computing stabilized norms for quantum operations via the theory of completely bounded maps. Quantum Inf. Comput. 9(1-2), 16–35 (2009)
Jordan S.P., Lee K.S., Preskill J.: Quantum algorithms for quantum field theories. Science 336(6085), 1130–1133 (2012). doi:10.1126/science.1217069
Kastoryano, M.J., Reeb, D., Wolf, M.M.: A cutoff phenomenon for quantum Markov chains. J. Phys. A 45(7), 075307 (2012). doi:10.1088/1751-8113/45/7/075307
Kastoryano M.J., Temme K.: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54(5), 052202 (2013). doi:10.1063/1.4804995
King C.: Hypercontractivity for semigroups of unital qubit channels. Commun. Math. Phys. 328(1), 285–301 (2014). doi:10.1007/s00220-014-1982-4
Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003). doi:10.1016/S0003-4916(02)00018-0
Klich I.: On the stability of topological phases on a lattice. Ann. Phys. 325, 2120 (2010). doi:10.1016/j.aop.2010.05.002
König R., Pastawski F.: Generating topological order: no speedup by dissipation. Phys. Rev. B 90, 045101 (2014). doi:10.1103/PhysRevB.90.045101
Kossakowski A., Frigerio A., Gorini V., Verri M.: Quantum detailed balance and KMS condition. Commun. Math. Phys. 57(2), 97–110 (1977)
Kraus B., Büchler H.P., Diehl S., Kantian A., Micheli A., Zoller P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78(4), 042307 (2008). doi:10.1103/PhysRevA.78.042307
Krauter H., Muschik C.A., Jensen K., Wasilewski W., Petersen J.M., Cirac J.I., Polzik E.S.: Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011). doi:10.1103/PhysRevLett.107.080503
Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American Mathematical Society, Providence (2009)
Liggett, T.M.: Interacting particle systems. In: Classics in Mathematics. Springer, Berlin (2005). (Re-print of the 1985 original)
Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)
Lubetzky E., Sly A.: Cutoff for the Ising model on the lattice. Invent. Math. 191(3), 719–755 (2013). doi:10.1007/s00222-012-0404-5
Majewski W.A.: The detailed balance condition in quantum statistical mechanics. J. Math. Phys. 25(3), 614–616 (1984). doi:10.1063/1.526164
Majewski W.A., Streater R.F.: Detailed balance and quantum dynamical maps. J. Phys. A 31(39), 7981–7995 (1998). doi:10.1088/0305-4470/31/39/013
Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1997). Lecture Notes in Math., vol. 1717, pp. 93–191. Springer, Berlin (1999). doi:10.1007/978-3-540-48115-7_2
Martinelli F., Olivieri E., Schonmann R.H.: For 2-D lattice spin systems weak mixing implies strong mixing. Commun. Math. Phys. 165(1), 33–47 (1994)
Maurer P.C., Kucsko G., Latta C., Jiang L., Yao N.Y., Bennett S.D., Pastawski F., Hunger D., Chisholm N., Markham M., Twitchen D.J., Cirac J.I., Lukin M.D.: Room-temperature quantum bit memory exceeding one second. Science 336(6086), 1283–1286 (2012). doi:10.1126/science.1220513
Michalakis S., Zwolak J.P.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322, 277–302 (2013). doi:10.1007/s00220-013-1762-6
Nachtergaele, B., Vershynina, A., Zagrebnov, V.A.: Lieb–Robinson bounds and existence of the thermodynamic limit for a class of irreversible quantum dynamics. In: Entropy and the Quantum II. Contemp. Math., vol. 552, pp. 161–175. Am. Math. Soc., Providence (2011). doi:10.1090/conm/552/10916
Nayak C., Simon S.H., Stern A., Freedman M., Das Sarma S.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008). doi:10.1103/RevModPhys.80.1083
Olkiewicz R., Zegarlinski B.: Hypercontractivity in noncommutative L p spaces. J. Funct. Anal. 161(1), 246–285 (1999)
Pastawski F., Clemente L., Cirac J.I.: Quantum memories based on engineered dissipation. Phys. Rev. A 83(1), 012304 (2011)
Poulin D.: Lieb–Robinson bound and locality for general Markovian quantum dynamics. Phys. Rev. Lett. 104(19), 190401 (2010). doi:10.1103/PhysRevLett.104.190401
Sachdev, S.: Quantum Phase Transitions. Wiley, New York (2007). doi:10.1002/9780470022184.hmm108
Sewell G.L.: Kms conditions and local thermodynamical stability of quantum lattice systems. II. Commun. Math. Phys. 55(1), 53–61 (1977)
Szehr, O., Reeb, D., Wolf, M.M.: Spectral convergence bounds for classical and quantum markov processes. Commun. Math. Phys. 1–31 (2014). doi:10.1007/s00220-014-2188-5
Szehr O., Wolf M.M.: Perturbation bounds for quantum Markov processes and their fixed points. J. Math. Phys. 54(3), 032203 (2013). doi:10.1063/1.4795112
Temme K., Kastoryano M.J., Ruskai M.B., Wolf M.M., Verstraete F.: The \({\chi^2}\)-divergence and mixing times of quantum Markov processes. J. Math. Phys. 51(12), 122201 (2010). doi:10.1063/1.3511335
Temme K., Pastawski F., Kastoryano M.J.: Hypercontractivity of quasi-free quantum semigroups. J. Phys. A Math. Theor. 47, 405303 (2014)
Verstraete F., Wolf M.M., Cirac J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5(9), 633–636 (2009)
Wolf, M.M.: Quantum channels and operations. Guided tour (2012). http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf. Accessed 27 July 2012
Wolf, M.M., Perez-Garcia, D.: The inverse eigenvalue problem for quantum channels (2010). arXiv:1005.4545
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. M. Wolf
Rights and permissions
About this article
Cite this article
Cubitt, T.S., Lucia, A., Michalakis, S. et al. Stability of Local Quantum Dissipative Systems. Commun. Math. Phys. 337, 1275–1315 (2015). https://doi.org/10.1007/s00220-015-2355-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-015-2355-3