Communications in Mathematical Physics

, Volume 337, Issue 3, pp 1275–1315 | Cite as

Stability of Local Quantum Dissipative Systems

  • Toby S. Cubitt
  • Angelo LuciaEmail author
  • Spyridon Michalakis
  • David Perez-Garcia


Open quantum systems weakly coupled to the environment are modeled by completely positive, trace preserving semigroups of linear maps. The generators of such evolutions are called Lindbladians. In the setting of quantum many-body systems on a lattice it is natural to consider Lindbladians that decompose into a sum of local interactions with decreasing strength with respect to the size of their support. For both practical and theoretical reasons, it is crucial to estimate the impact that perturbations in the generating Lindbladian, arising as noise or errors, can have on the evolution. These local perturbations are potentially unbounded, but constrained to respect the underlying lattice structure. We show that even for polynomially decaying errors in the Lindbladian, local observables and correlation functions are stable if the unperturbed Lindbladian has a unique fixed point and a mixing time that scales logarithmically with the system size. The proof relies on Lieb–Robinson bounds, which describe a finite group velocity for propagation of information in local systems. As a main example, we prove that classical Glauber dynamics is stable under local perturbations, including perturbations in the transition rates, which may not preserve detailed balance.


Periodic Point Detailed Balance Gibbs State Open Quantum System Local Observable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alicki R., Horodecki M., Horodecki P., Horodecki R.: On thermal stability of topological qubit in Kitaev’s 4d model. Open Syst. Inf. Dyn. 17(01), 1–20 (2010). doi: 10.1142/S1230161210000023 CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Araki H., Sewell G.L.: Kms conditions and local thermodynamical stability of quantum lattice systems. Commun. Math. Phys. 52(2), 103–109 (1977)Google Scholar
  3. 3.
    Aspuru-Guzik A., Walther P.: Photonic quantum simulators. Nat. Phys. 8(4), 285–291 (2012)CrossRefGoogle Scholar
  4. 4.
    Augusiak R., Cucchietti F.M., Haake F., Lewenstein M.: Quantum kinetic Ising models. New J. Phys. 12(2), 025021 (2010). doi: 10.1088/1367-2630/12/2/025021 CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Barreiro J.T., Schindler P., Gühne O., Monz T., Chwalla M., Roos C.F., Hennrich M., Blatt R. :Experimental multiparticle entanglement dynamics induced by decoherence. Nat. Phys. 6, 943–946 (2010). doi: 10.1038/nphys1781
  6. 6.
    Barthel T., Kliesch M.: Quasilocality and efficient simulation of Markovian quantum dynamics. Phys. Rev. Lett. 108(23), 230–504 (2012)Google Scholar
  7. 7.
    Blatt R., Roos C.: Quantum simulations with trapped ions. Nat. Phys. 8(4), 277–284 (2012)CrossRefGoogle Scholar
  8. 8.
    Bloch I., Dalibard J., Nascimbène S.: Quantum simulations with ultracold quantum gases. Nat. Phys. 8(4), 267–276 (2012)CrossRefGoogle Scholar
  9. 9.
    Bodineau T., Zegarlinski B.: Hypercontractivity via spectral theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3(01), 15–31 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bravyi S., Hastings M.B., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 5(9), 093512 (2010). doi: 10.1063/1.3490195 CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Briegel H., Browne D., Dür W., Raussendorf R., Van den Nest M.: Measurement-based quantum computation. Nat. Phys. 5(1), 19–26 (2009)CrossRefGoogle Scholar
  12. 12.
    Dennis E., Kitaev A., Landahl A., Preskill J.: Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002). doi: 10.1063/1.1499754 CrossRefADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    Duan L.M., Monroe C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010). doi: 10.1103/RevModPhys.82.1209 CrossRefADSGoogle Scholar
  14. 14.
    Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. Science 292(5516), 472–475 (2001). doi: 10.1126/science.1057726 CrossRefADSzbMATHMathSciNetGoogle Scholar
  15. 15.
    Gorini V., Kossakowski A., Sudarshan E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821–825 (1976)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Gross L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)CrossRefGoogle Scholar
  17. 17.
    Gross, L.: Logarithmic Sobolev inequalities and contractivity properties of semigroups. In: Dirichlet Forms (Varenna, 1992). Lecture Notes in Math., vol. 1563, pp. 54–88. Springer, Berlin (1993). doi: 10.1007/BFb0074091
  18. 18.
    Gross, L.: Hypercontractivity, logarithmic Sobolev inequalities, and applications: a survey of surveys. In: Diffusion, Quantum Theory, and Radically Elementary Mathematics. Math. Notes, vol. 47, pp. 45–73. Princeton Univ. Press, Princeton (2006)Google Scholar
  19. 19.
    Haah J.: Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 83(4), 042330 (2011). doi: 10.1103/PhysRevA.83.042330 CrossRefADSGoogle Scholar
  20. 20.
    Hammerer K., Sørensen A.S., Polzik E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010). doi: 10.1103/RevModPhys.82.1041 CrossRefADSGoogle Scholar
  21. 21.
    Hastings M.B.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69, 104–431 (2004). doi: 10.1103/PhysRevB.69.104431 CrossRefGoogle Scholar
  22. 22.
    Hastings M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp. 2007(08), P08024 (2007)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Hastings, M.B.: Locality in quantum systems (2010). arXiv:1008.5137
  24. 24.
    Hastings M.B., Koma T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006). doi: 10.1007/s00220-006-0030-4 CrossRefADSzbMATHMathSciNetGoogle Scholar
  25. 25.
    Hastings M.B., Wen X.G.: Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005). doi: 10.1103/PhysRevB.72.045141 CrossRefADSGoogle Scholar
  26. 26.
    Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. In: Quantum Computers, Algorithms Chaos. Proc. Internat. School Phys. Enrico Fermi, vol. 162, pp. 115–218. IOS, Amsterdam (2006)Google Scholar
  27. 27.
    Holley, R.: Possible rates of convergence in finite range, attractive spin systems. In: Particle Systems, Random Media and Large Deviations (Brunswick, Maine, 1984). Contemp. Math., vol. 41, pp. 215–234. Am. Math. Soc., Providence (1985). doi: 10.1090/conm/041/814713
  28. 28.
    Houck A.A., Türeci H.E., Koch J.: On-chip quantum simulation with superconducting circuits. Nat. Phys. 8(4), 292–299 (2012)CrossRefGoogle Scholar
  29. 29.
    Johnston N., Kribs D.W., Paulsen V.I.: Computing stabilized norms for quantum operations via the theory of completely bounded maps. Quantum Inf. Comput. 9(1-2), 16–35 (2009)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Jordan S.P., Lee K.S., Preskill J.: Quantum algorithms for quantum field theories. Science 336(6085), 1130–1133 (2012). doi: 10.1126/science.1217069 CrossRefADSGoogle Scholar
  31. 31.
    Kastoryano, M.J., Reeb, D., Wolf, M.M.: A cutoff phenomenon for quantum Markov chains. J. Phys. A 45(7), 075307 (2012). doi: 10.1088/1751-8113/45/7/075307
  32. 32.
    Kastoryano M.J., Temme K.: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54(5), 052202 (2013). doi: 10.1063/1.4804995 CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    King C.: Hypercontractivity for semigroups of unital qubit channels. Commun. Math. Phys. 328(1), 285–301 (2014). doi: 10.1007/s00220-014-1982-4 CrossRefADSzbMATHGoogle Scholar
  34. 34.
    Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003). doi: 10.1016/S0003-4916(02)00018-0 CrossRefADSzbMATHMathSciNetGoogle Scholar
  35. 35.
    Klich I.: On the stability of topological phases on a lattice. Ann. Phys. 325, 2120 (2010). doi: 10.1016/j.aop.2010.05.002 CrossRefADSzbMATHMathSciNetGoogle Scholar
  36. 36.
    König R., Pastawski F.: Generating topological order: no speedup by dissipation. Phys. Rev. B 90, 045101 (2014). doi: 10.1103/PhysRevB.90.045101 CrossRefADSGoogle Scholar
  37. 37.
    Kossakowski A., Frigerio A., Gorini V., Verri M.: Quantum detailed balance and KMS condition. Commun. Math. Phys. 57(2), 97–110 (1977)CrossRefADSzbMATHMathSciNetGoogle Scholar
  38. 38.
    Kraus B., Büchler H.P., Diehl S., Kantian A., Micheli A., Zoller P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78(4), 042307 (2008). doi: 10.1103/PhysRevA.78.042307 CrossRefADSGoogle Scholar
  39. 39.
    Krauter H., Muschik C.A., Jensen K., Wasilewski W., Petersen J.M., Cirac J.I., Polzik E.S.: Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011). doi: 10.1103/PhysRevLett.107.080503 CrossRefADSGoogle Scholar
  40. 40.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American Mathematical Society, Providence (2009)Google Scholar
  41. 41.
    Liggett, T.M.: Interacting particle systems. In: Classics in Mathematics. Springer, Berlin (2005). (Re-print of the 1985 original)Google Scholar
  42. 42.
    Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)CrossRefADSzbMATHMathSciNetGoogle Scholar
  43. 43.
    Lubetzky E., Sly A.: Cutoff for the Ising model on the lattice. Invent. Math. 191(3), 719–755 (2013). doi: 10.1007/s00222-012-0404-5 CrossRefADSzbMATHMathSciNetGoogle Scholar
  44. 44.
    Majewski W.A.: The detailed balance condition in quantum statistical mechanics. J. Math. Phys. 25(3), 614–616 (1984). doi: 10.1063/1.526164 CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    Majewski W.A., Streater R.F.: Detailed balance and quantum dynamical maps. J. Phys. A 31(39), 7981–7995 (1998). doi: 10.1088/0305-4470/31/39/013 CrossRefADSzbMATHMathSciNetGoogle Scholar
  46. 46.
    Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1997). Lecture Notes in Math., vol. 1717, pp. 93–191. Springer, Berlin (1999). doi: 10.1007/978-3-540-48115-7_2
  47. 47.
    Martinelli F., Olivieri E., Schonmann R.H.: For 2-D lattice spin systems weak mixing implies strong mixing. Commun. Math. Phys. 165(1), 33–47 (1994)CrossRefADSzbMATHMathSciNetGoogle Scholar
  48. 48.
    Maurer P.C., Kucsko G., Latta C., Jiang L., Yao N.Y., Bennett S.D., Pastawski F., Hunger D., Chisholm N., Markham M., Twitchen D.J., Cirac J.I., Lukin M.D.: Room-temperature quantum bit memory exceeding one second. Science 336(6086), 1283–1286 (2012). doi: 10.1126/science.1220513 CrossRefADSGoogle Scholar
  49. 49.
    Michalakis S., Zwolak J.P.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322, 277–302 (2013). doi: 10.1007/s00220-013-1762-6 CrossRefADSzbMATHMathSciNetGoogle Scholar
  50. 50.
    Nachtergaele, B., Vershynina, A., Zagrebnov, V.A.: Lieb–Robinson bounds and existence of the thermodynamic limit for a class of irreversible quantum dynamics. In: Entropy and the Quantum II. Contemp. Math., vol. 552, pp. 161–175. Am. Math. Soc., Providence (2011). doi: 10.1090/conm/552/10916
  51. 51.
    Nayak C., Simon S.H., Stern A., Freedman M., Das Sarma S.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008). doi: 10.1103/RevModPhys.80.1083 CrossRefADSzbMATHMathSciNetGoogle Scholar
  52. 52.
    Olkiewicz R., Zegarlinski B.: Hypercontractivity in noncommutative L p spaces. J. Funct. Anal. 161(1), 246–285 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Pastawski F., Clemente L., Cirac J.I.: Quantum memories based on engineered dissipation. Phys. Rev. A 83(1), 012304 (2011)CrossRefADSGoogle Scholar
  54. 54.
    Poulin D.: Lieb–Robinson bound and locality for general Markovian quantum dynamics. Phys. Rev. Lett. 104(19), 190401 (2010). doi: 10.1103/PhysRevLett.104.190401 CrossRefADSMathSciNetGoogle Scholar
  55. 55.
    Sachdev, S.: Quantum Phase Transitions. Wiley, New York (2007). doi: 10.1002/9780470022184.hmm108
  56. 56.
    Sewell G.L.: Kms conditions and local thermodynamical stability of quantum lattice systems. II. Commun. Math. Phys. 55(1), 53–61 (1977)CrossRefADSMathSciNetGoogle Scholar
  57. 57.
    Szehr, O., Reeb, D., Wolf, M.M.: Spectral convergence bounds for classical and quantum markov processes. Commun. Math. Phys. 1–31 (2014). doi: 10.1007/s00220-014-2188-5
  58. 58.
    Szehr O., Wolf M.M.: Perturbation bounds for quantum Markov processes and their fixed points. J. Math. Phys. 54(3), 032203 (2013). doi: 10.1063/1.4795112 CrossRefADSMathSciNetGoogle Scholar
  59. 59.
    Temme K., Kastoryano M.J., Ruskai M.B., Wolf M.M., Verstraete F.: The \({\chi^2}\)-divergence and mixing times of quantum Markov processes. J. Math. Phys. 51(12), 122201 (2010). doi: 10.1063/1.3511335 CrossRefADSMathSciNetGoogle Scholar
  60. 60.
    Temme K., Pastawski F., Kastoryano M.J.: Hypercontractivity of quasi-free quantum semigroups. J. Phys. A Math. Theor. 47, 405303 (2014)CrossRefMathSciNetGoogle Scholar
  61. 61.
    Verstraete F., Wolf M.M., Cirac J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5(9), 633–636 (2009)CrossRefGoogle Scholar
  62. 62.
    Wolf, M.M.: Quantum channels and operations. Guided tour (2012). Accessed 27 July 2012
  63. 63.
    Wolf, M.M., Perez-Garcia, D.: The inverse eigenvalue problem for quantum channels (2010). arXiv:1005.4545

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Toby S. Cubitt
    • 1
  • Angelo Lucia
    • 2
    Email author
  • Spyridon Michalakis
    • 3
  • David Perez-Garcia
    • 2
  1. 1.DAMTP, University of CambridgeCambridgeUK
  2. 2.Dpto. de Análisis MatemáticoUniversidad Complutense de MadridMadridSpain
  3. 3.Institute for Quantum Information and MatterCaltechPasadenaUSA

Personalised recommendations