Skip to main content
Log in

The Navier–Stokes Equations in a Space of Bounded Functions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a blow-up rate of the Navier–Stokes equations subject to the non-slip boundary condition for a certain class of domains including bounded and exterior domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, K.: On estimates for the Stokes flow in a space of bounded functions (2014) (preprint). arXiv:1406.5274

  2. Abe K., Giga Y.: Analyticity of the Stokes semigroup in spaces of bounded functions. Acta Math. 211(1), 1–46 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abe, K., Giga, Y.: The L -Stokes semigroup in exterior domains. J. Evol. Equ. 14(1), 1–28 (2014)

  4. Abe, K., Giga, Y., Hieber, M.: Stokes resolvent estimates in spaces of bounded functions. Ann. Sci. Éc. Norm. Supér. 4 (to appear). arXiv:1402.3791

  5. Bae H.O., Jin B.: Existence of strong mild solution of the Navier-Stokes equations in the half space with nondecaying initial data. J. Korean Math. Soc. 49(1), 113–138 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cannon J.R., Knightly G.H.: A note on the Cauchy problem for the Navier–Stokes equations. SIAM J. Appl. Math. 18, 641–644 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cannone M.: Ondelettes, paraproduits et Navier–Stokes. Diderot Editeur, Paris (1995)

    MATH  Google Scholar 

  8. Cannone M., Meyer Y.: Littlewood–Paley decomposition and Navier–Stokes equations. Methods Appl. Anal. 2(3), 307–319 (1995)

    MATH  MathSciNet  Google Scholar 

  9. Chen, C.C., Strain, R.M., Tsai, T.P., Yau, H.T.: Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations. Int. Math. Res. Not. IMRN 31(9) (Art. ID rnn016) (2008)

  10. Chen C.C., Strain R.M., Tsai T.P., Yau H.T.: Lower bounds on the blow-up rate of the axisymmetric Navier–Stokes equations. II. Commun. Partial Differ. Equ. 34(1–3), 203–232 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. de Simon L.: Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. Rend. Sem. Mat. Univ. Padova 34, 205–223 (1964)

    MATH  MathSciNet  Google Scholar 

  12. Farwig R., Kozono H., Sohr H.: An L q-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Farwig R., Kozono H., Sohr H.: On the Helmholtz decomposition in general unbounded domains. Arch. Math. (Basel) 88(3), 239–248 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Farwig R., Kozono H., Sohr H.: On the Stokes operator in general unbounded domains. Hokkaido Math. J. 38(1), 111–136 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Foiaş C., Temam R.: Some analytic and geometric properties of the solutions of the evolution Navier–Stokes equations. J. Math. Pures Appl. (9) 58(3), 339–368 (1979)

    MATH  MathSciNet  Google Scholar 

  16. Fujita H., Kato T.: On the Navier–Stokes initial value problem. I. Arch. Rational Mech. Anal. 16, 269–315 (1964)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Galdi G.P., Maremonti P., Zhou Y.: On the Navier–Stokes problem in exterior domains with non decaying initial data. J. Math. Fluid Mech. 14(4), 633–652 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Geissert M., Heck H., Hieber M., Sawada O.: Weak Neumann implies Stokes. J. Reine Angew. Math. 669, 75–100 (2012)

    MATH  MathSciNet  Google Scholar 

  19. Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  20. Giga Y., Hsu P.Y., Maekawa Y.: A Liouville theorem for the planer Navier–Stokes equations with the no-slip boundary condition and its application to a geometric regularity criterion. Commun. Partial Differ. Equ. 39, 1906–1935 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Giga, Y., Inui, K., Matsui, S.: On the Cauchy problem for the Navier–Stokes equations with nondecaying initial data. In: Advances in fluid dynamics, vol. 4 of Quad. Mat., pp. 27–68. Dept. Math., Seconda Univ. Napoli, Caserta (1999)

  22. Giga Y., Miura H.: On vorticity directions near singularities for the Navier–Stokes flows with infinite energy. Commun. Math. Phys. 303(2), 289–300 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Giga Y., Miyakawa T.: Solutions in L r of the Navier–Stokes initial value problem. Arch. Rational Mech. Anal. 89(3), 267–281 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin (2001)

    Google Scholar 

  25. Kenig C.E., Lin F., Shen Z.: Homogenization of elliptic systems with neumann boundary conditions. J. Am. Math. Soc. 26, 901–937 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Knightly G.H.: On a class of global solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 21, 211–245 (1966)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Knightly G.H.: A Cauchy problem for the Navier–Stokes equations in R n. SIAM J. Math. Anal. 3, 506–511 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  28. Koch G., Nadirashvili N., Seregin G.A., Šverák V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203(1), 83–105 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  30. Maremonti, P.: Stokes and Navier–Stokes problems in the half-space: existence and uniqueness of solutions non converging to a limit at infinity. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 362 (Kraevye Zacachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii Funktsii. 39), vol. 366, pp. 176–240 (2008)

  31. Robinson J.C., Sadowski W., Silva R.P.: Lower bounds on blow up solutions of the three-dimensional Navier–Stokes equations in homogeneous Sobolev spaces. J. Math. Phys. 53(11), 115618, 15 (2012)

    Article  MathSciNet  Google Scholar 

  32. Seregin G.: A certain necessary condition of potential blow up for Navier–Stokes equations. Comm. Math. Phys. 312(3), 833–845 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Seregin G., Seregin G., Seregin G.: On type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations. Commun. Partial Differ. Equ. 34(1-3), 171–201 (2009)

    Article  MATH  Google Scholar 

  34. Sohr, H.: The Navier–Stokes equations. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2001)

  35. Solonnikov V.A.: On nonstationary Stokes problem and Navier–Stokes problem in a half-space with initial data nondecreasing at infinity. J. Math. Sci. (N. Y.) 114(5), 1726–1740 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Abe.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, K. The Navier–Stokes Equations in a Space of Bounded Functions. Commun. Math. Phys. 338, 849–865 (2015). https://doi.org/10.1007/s00220-015-2349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2349-1

Keywords

Navigation