Communications in Mathematical Physics

, Volume 337, Issue 1, pp 455–472 | Cite as

Reflection Positivity for Parafermions

Article

Abstract

We establish reflection positivity for Gibbs trace states for a class of gauge-invariant, reflection-invariant Hamiltonians describing parafermion interactions on a lattice. We relate these results to recent work in the condensed-matter physics literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Au-Yang H., Perk J.H.H.: Parafermions in the τ 2 model. J. Phys. A Math. Theor. 47, 315002 (2014). doi:10.1088/1751-8113/47/31/315002 CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Barkeshli M., Qi X.-L.: Topological nematic states and non-Abelian lattice dislocations. Phys. Rev. X 2, 031013 (2012). doi:10.1103/PhysRevX.2.031013 Google Scholar
  3. 3.
    Barkeshli, M., Jian, C.-M., Qi, X.-L.: Twist defects and projective non-Abelian braiding statistics. Phys. Rev. B 87, 045130. doi:10.1103/PhysRevB.87.045130
  4. 4.
    Baxter R.J.: A simple solvable Z N Hamiltonian. Phys. Lett. A 140, 155–157 (1989). doi:10.1016/0375-9601(89)90884-0 CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Baxter R.J.: Superintegrable chiral Potts model: thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian. J. Stat. Phys. 57, 1–39 (1989). doi:10.1007/BF01023632 CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Baxter R.J.: Transfer matrix functional relations for the generalized τ 2(t q) model. J. Stat. Phys. 117, 1–25 (2004). doi:10.1023/B:JOSS.0000044062.64287.b9 CrossRefADSMATHMathSciNetGoogle Scholar
  7. 7.
    Baxter R.J.: The τ 2 model and parafermions. J. Phys. A Math. Theor. 47, 315001 (2014). doi:10.1088/1751-8113/47/31/315001 CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Biskup, M.: Reflection positivity and phase transitions in lattice spin models. In: Kotecky, R. (ed.) Methods of Contemporary Mathematical Statistical Physics. Lecture Notes in Mathematics, vol. 1970, pp. 1–86. Springer, Berlin (2009). doi:10.1007/978-3-540-92796-9
  9. 9.
    Bondesan, R., Quella, T.: Topological and symmetry broken phases of \({\mathbb{Z}_{N}}\) parafermions in one dimension. J. Stat. Mech. P10024 (2013). doi:10.1088/1742-5468/2013/10/P10024
  10. 10.
    Clarke D.J., Alicea J., Shtengel K.: Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013). doi:10.1038/ncomms2340 CrossRefADSGoogle Scholar
  11. 11.
    Chesi S., Jaffe A., Loss D., Pedrocchi F.L.: Vortex loops and Majoranas. J. Math. Phys. 54, 112203 (2013). doi:10.1063/1.4829273 CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Cobanera E., Ortiz G.: Fock parafermions and self-dual representations of the braid group. Phys. Rev. A 89, 012328 (2014). doi:10.1103/PhysRevA.89.012328 CrossRefADSGoogle Scholar
  13. 13.
    Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978). doi:10.1007/978-3-662-10018-9_12 CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Fendley, P.: Parafermionic edge zero modes in \({\mathbb{Z}_{N}}\) -invariant spin chains. J. Stat. Mech. P11020 (2012). doi:10.1088/1742-5468/2012/11/P11020
  15. 15.
    Fendley P.: Free parafermions. J. Phys. A Math. Theor. 47, 075001 (2014). doi:10.1088/1751-8113/47/7/075001 CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Fradkin E., Kadanoff L.: Disorder variables and parafermions in two-dimensional statistical mechanics. Nucl. Phys. B 170 [FS1], 1–15 (1980). doi:10.1016/0550-3213(80)90472-1 CrossRefADSGoogle Scholar
  17. 17.
    Fröhlich J., Lieb E.: Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys. 60, 233–267 (1978). doi:10.1007/BF01612891 CrossRefADSGoogle Scholar
  18. 18.
    Fröhlich J., Simon B., Spencer T.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. Math. Phys. 50, 78–85 (1976). doi:10.1007/BF01608557 CrossRefADSGoogle Scholar
  19. 19.
    Fröhlich J., Gabbiani F.: Braid statistics in local quantum field theory. Rev. Math. Phys. 2, 251–353 (1990). doi:10.1142/S0129055X90000107 CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Green H.S.: A generalized method of field quantization. Phys. Rev. 90, 270–273 (1953). doi:10.1103/PhysRev.90.270 CrossRefADSMATHGoogle Scholar
  21. 21.
    Hatano N., Nelson D.R.: Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570 (1996). doi:10.1103/PhysRevLett.77.570 CrossRefADSGoogle Scholar
  22. 22.
    ’t Hooft G.: On the phase transition towards permanent quark confinement. Nucl. Phys. B 138, 1–15 (1978). doi:10.1016/0550-3213(78)90153-0 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Jaffe A., Jäkel C., Martinez II R.E.: Complex classical fields: a framework for reflection positivity. Commun. Math. Phys. 329, 1–28 (2014). doi:10.1007/s00220-014-2040-y CrossRefADSMATHGoogle Scholar
  24. 24.
    Jaffe A., Jäkel C., Martinez II R.E.: Complex classical fields: an example. J. Funct. Anal. 266, 1833–1881 (2014). doi:10.1016/j.jfa.2013.08.033 CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Jaffe, A., Pedrocchi, F.L.: Reflection positivity for Majoranas. Ann. Henri Poincaré 16, 189–203 (2015). doi:10.1007/s00023-014-0311-y
  26. 26.
    Jaffe A., Pedrocchi F.L.: Topological order and reflection positivity. Europhys. Lett. (EPL) 105, 40002 (2014). doi:10.1209/0295-5075/105/40002 CrossRefADSGoogle Scholar
  27. 27.
    Klinovaja J., Loss D.: Parafermions in interacting nanowire bundle. Phys. Rev. Lett. 112, 246403 (2014). doi:10.1103/PhysRevLett.112.246403 CrossRefADSGoogle Scholar
  28. 28.
    Klinovaja J., Loss D.: Time-reversal invariant parafermions in interacting rashba nanowires. Phys. Rev. B 90, 045118 (2014). doi:10.1103/PhysRevB.90.045118 CrossRefADSGoogle Scholar
  29. 29.
    Lieb E.H.: Flux phase of the half-filled band. Phys. Rev. Lett. 73, 2158 (1994). doi:10.1103/PhysRevLett.73.2158 CrossRefADSGoogle Scholar
  30. 30.
    Lindner N.H., Berg E., Refael G., Stern A.: Fractionalizing Majorana fermions: non-Abelian statistics in the edges of Abelian quantum hall states. Phys. Rev. X 2, 041002 (2012). doi:10.1103/PhysRevX.2.041002 Google Scholar
  31. 31.
    Macris N., Nachtergaele B.: On the flux phase conjecture at half-filling: an improved proof. J. Stat. Phys. 85, 745–761 (1996). doi:10.1007/BF02199361 CrossRefADSMATHMathSciNetGoogle Scholar
  32. 32.
    Mong R.S.K., Clarke D.J., Alicea J., Lindner N.H., Fendley P., Nayak C., Oreg Y., Stern A., Berg E., Shtengel K., Fisher M.P.A.: Universal topological quantum computation from superconductor-Abelian quantum hall heterostructure. Phys. Rev. X 4, 011036 (2014). doi:10.1103/PhysRevX.4.011036 Google Scholar
  33. 33.
    Morris A.O.: On a generalized clifford algebra. Q. J. Math. Oxf. 18, 7–12 (1967). doi:10.1093/qmath/18.1.7 CrossRefADSMATHGoogle Scholar
  34. 34.
    Motruk J., Berg E., Turner A.M., Pollmann F.: Topological phases in gapped edges of fractionalized systems. Phys. Rev. B 88, 085115 (2013). doi:10.1103/PhysRevB.88.085115 CrossRefADSGoogle Scholar
  35. 35.
    Nayak C., Simon S.H., Stern A., Freedman M., Das Sarma S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008). doi:10.1103/RevModPhys.80.1083 CrossRefADSMATHMathSciNetGoogle Scholar
  36. 36.
    Nelson D.R., Shnerb N.M.: Non-Hermitian localization and population biology. Phys. Rev. E 58, 1383 (1998). doi:10.1103/PhysRevE.58.1383 CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions, I. Commun. Math. Phys. 31, 83–112 (1973). doi:10.1007/BF01645738 CrossRefADSMATHMathSciNetGoogle Scholar
  38. 38.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions, II. Commun. Math. Phys. 42, 281–305 (1975). doi:10.1007/BF01608978 CrossRefADSMATHMathSciNetGoogle Scholar
  39. 39.
    Osterwalder K., Schrader R.: Euclidean Fermi fields and a Feynman–Kac formula for boson–fermion interactions. Helv. Phys. Acta 46, 227–302 (1973). doi:10.5169/seals-114484 MathSciNetGoogle Scholar
  40. 40.
    Sylvester, J.J.: A word on nonions. Johns Hopkins Univ. Circ. 1(17), 241–242 (1882). https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/32845/I017.PDF
  41. 41.
    Sylvester, J.J.: On quaternions, nonions, sedenions, etc. Johns Hopkins Univ. Circ. 3(27), 7–9 (1883). https://jscholarship.library.jhu.edu/handle/1774.2/32855
  42. 42.
    Trefethen L.N., Embree M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)Google Scholar
  43. 43.
    Vaezi A.: Fractional topological superconductor with fractionalized Majorana fermions. Phys. Rev. B 87, 035132 (2013). doi:10.1103/PhysRevB.87.035132 CrossRefADSGoogle Scholar
  44. 44.
    Yamazaki, K.: On projective representations and ring extensions of finite groups. J. Fac. Sci Univ. Tokyo Sect. I 10, 147–195 (1964). http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/6042/1/jfs100205.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA
  2. 2.Department of PhysicsUniversity of BaselBaselSwitzerland
  3. 3.JARA Institute for Quantum InformationRWTH Aachen UniversityAachenGermany

Personalised recommendations