Communications in Mathematical Physics

, Volume 337, Issue 1, pp 455–472 | Cite as

Reflection Positivity for Parafermions



We establish reflection positivity for Gibbs trace states for a class of gauge-invariant, reflection-invariant Hamiltonians describing parafermion interactions on a lattice. We relate these results to recent work in the condensed-matter physics literature.


Braid Group Topological Order Majorana Fermion Quantum Hall State Global Gauge Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Au-Yang H., Perk J.H.H.: Parafermions in the τ 2 model. J. Phys. A Math. Theor. 47, 315002 (2014). doi: 10.1088/1751-8113/47/31/315002 CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Barkeshli M., Qi X.-L.: Topological nematic states and non-Abelian lattice dislocations. Phys. Rev. X 2, 031013 (2012). doi: 10.1103/PhysRevX.2.031013 Google Scholar
  3. 3.
    Barkeshli, M., Jian, C.-M., Qi, X.-L.: Twist defects and projective non-Abelian braiding statistics. Phys. Rev. B 87, 045130. doi: 10.1103/PhysRevB.87.045130
  4. 4.
    Baxter R.J.: A simple solvable Z N Hamiltonian. Phys. Lett. A 140, 155–157 (1989). doi: 10.1016/0375-9601(89)90884-0 CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Baxter R.J.: Superintegrable chiral Potts model: thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian. J. Stat. Phys. 57, 1–39 (1989). doi: 10.1007/BF01023632 CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Baxter R.J.: Transfer matrix functional relations for the generalized τ 2(t q) model. J. Stat. Phys. 117, 1–25 (2004). doi: 10.1023/B:JOSS.0000044062.64287.b9 CrossRefADSMATHMathSciNetGoogle Scholar
  7. 7.
    Baxter R.J.: The τ 2 model and parafermions. J. Phys. A Math. Theor. 47, 315001 (2014). doi: 10.1088/1751-8113/47/31/315001 CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Biskup, M.: Reflection positivity and phase transitions in lattice spin models. In: Kotecky, R. (ed.) Methods of Contemporary Mathematical Statistical Physics. Lecture Notes in Mathematics, vol. 1970, pp. 1–86. Springer, Berlin (2009). doi: 10.1007/978-3-540-92796-9
  9. 9.
    Bondesan, R., Quella, T.: Topological and symmetry broken phases of \({\mathbb{Z}_{N}}\) parafermions in one dimension. J. Stat. Mech. P10024 (2013). doi: 10.1088/1742-5468/2013/10/P10024
  10. 10.
    Clarke D.J., Alicea J., Shtengel K.: Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013). doi: 10.1038/ncomms2340 CrossRefADSGoogle Scholar
  11. 11.
    Chesi S., Jaffe A., Loss D., Pedrocchi F.L.: Vortex loops and Majoranas. J. Math. Phys. 54, 112203 (2013). doi: 10.1063/1.4829273 CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Cobanera E., Ortiz G.: Fock parafermions and self-dual representations of the braid group. Phys. Rev. A 89, 012328 (2014). doi: 10.1103/PhysRevA.89.012328 CrossRefADSGoogle Scholar
  13. 13.
    Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978). doi: 10.1007/978-3-662-10018-9_12 CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Fendley, P.: Parafermionic edge zero modes in \({\mathbb{Z}_{N}}\) -invariant spin chains. J. Stat. Mech. P11020 (2012). doi: 10.1088/1742-5468/2012/11/P11020
  15. 15.
    Fendley P.: Free parafermions. J. Phys. A Math. Theor. 47, 075001 (2014). doi: 10.1088/1751-8113/47/7/075001 CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Fradkin E., Kadanoff L.: Disorder variables and parafermions in two-dimensional statistical mechanics. Nucl. Phys. B 170 [FS1], 1–15 (1980). doi: 10.1016/0550-3213(80)90472-1 CrossRefADSGoogle Scholar
  17. 17.
    Fröhlich J., Lieb E.: Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys. 60, 233–267 (1978). doi: 10.1007/BF01612891 CrossRefADSGoogle Scholar
  18. 18.
    Fröhlich J., Simon B., Spencer T.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. Math. Phys. 50, 78–85 (1976). doi: 10.1007/BF01608557 CrossRefADSGoogle Scholar
  19. 19.
    Fröhlich J., Gabbiani F.: Braid statistics in local quantum field theory. Rev. Math. Phys. 2, 251–353 (1990). doi: 10.1142/S0129055X90000107 CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Green H.S.: A generalized method of field quantization. Phys. Rev. 90, 270–273 (1953). doi: 10.1103/PhysRev.90.270 CrossRefADSMATHGoogle Scholar
  21. 21.
    Hatano N., Nelson D.R.: Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570 (1996). doi: 10.1103/PhysRevLett.77.570 CrossRefADSGoogle Scholar
  22. 22.
    ’t Hooft G.: On the phase transition towards permanent quark confinement. Nucl. Phys. B 138, 1–15 (1978). doi: 10.1016/0550-3213(78)90153-0 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Jaffe A., Jäkel C., Martinez II R.E.: Complex classical fields: a framework for reflection positivity. Commun. Math. Phys. 329, 1–28 (2014). doi: 10.1007/s00220-014-2040-y CrossRefADSMATHGoogle Scholar
  24. 24.
    Jaffe A., Jäkel C., Martinez II R.E.: Complex classical fields: an example. J. Funct. Anal. 266, 1833–1881 (2014). doi: 10.1016/j.jfa.2013.08.033 CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Jaffe, A., Pedrocchi, F.L.: Reflection positivity for Majoranas. Ann. Henri Poincaré 16, 189–203 (2015). doi: 10.1007/s00023-014-0311-y
  26. 26.
    Jaffe A., Pedrocchi F.L.: Topological order and reflection positivity. Europhys. Lett. (EPL) 105, 40002 (2014). doi: 10.1209/0295-5075/105/40002 CrossRefADSGoogle Scholar
  27. 27.
    Klinovaja J., Loss D.: Parafermions in interacting nanowire bundle. Phys. Rev. Lett. 112, 246403 (2014). doi: 10.1103/PhysRevLett.112.246403 CrossRefADSGoogle Scholar
  28. 28.
    Klinovaja J., Loss D.: Time-reversal invariant parafermions in interacting rashba nanowires. Phys. Rev. B 90, 045118 (2014). doi: 10.1103/PhysRevB.90.045118 CrossRefADSGoogle Scholar
  29. 29.
    Lieb E.H.: Flux phase of the half-filled band. Phys. Rev. Lett. 73, 2158 (1994). doi: 10.1103/PhysRevLett.73.2158 CrossRefADSGoogle Scholar
  30. 30.
    Lindner N.H., Berg E., Refael G., Stern A.: Fractionalizing Majorana fermions: non-Abelian statistics in the edges of Abelian quantum hall states. Phys. Rev. X 2, 041002 (2012). doi: 10.1103/PhysRevX.2.041002 Google Scholar
  31. 31.
    Macris N., Nachtergaele B.: On the flux phase conjecture at half-filling: an improved proof. J. Stat. Phys. 85, 745–761 (1996). doi: 10.1007/BF02199361 CrossRefADSMATHMathSciNetGoogle Scholar
  32. 32.
    Mong R.S.K., Clarke D.J., Alicea J., Lindner N.H., Fendley P., Nayak C., Oreg Y., Stern A., Berg E., Shtengel K., Fisher M.P.A.: Universal topological quantum computation from superconductor-Abelian quantum hall heterostructure. Phys. Rev. X 4, 011036 (2014). doi: 10.1103/PhysRevX.4.011036 Google Scholar
  33. 33.
    Morris A.O.: On a generalized clifford algebra. Q. J. Math. Oxf. 18, 7–12 (1967). doi: 10.1093/qmath/18.1.7 CrossRefADSMATHGoogle Scholar
  34. 34.
    Motruk J., Berg E., Turner A.M., Pollmann F.: Topological phases in gapped edges of fractionalized systems. Phys. Rev. B 88, 085115 (2013). doi: 10.1103/PhysRevB.88.085115 CrossRefADSGoogle Scholar
  35. 35.
    Nayak C., Simon S.H., Stern A., Freedman M., Das Sarma S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008). doi: 10.1103/RevModPhys.80.1083 CrossRefADSMATHMathSciNetGoogle Scholar
  36. 36.
    Nelson D.R., Shnerb N.M.: Non-Hermitian localization and population biology. Phys. Rev. E 58, 1383 (1998). doi: 10.1103/PhysRevE.58.1383 CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions, I. Commun. Math. Phys. 31, 83–112 (1973). doi: 10.1007/BF01645738 CrossRefADSMATHMathSciNetGoogle Scholar
  38. 38.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions, II. Commun. Math. Phys. 42, 281–305 (1975). doi: 10.1007/BF01608978 CrossRefADSMATHMathSciNetGoogle Scholar
  39. 39.
    Osterwalder K., Schrader R.: Euclidean Fermi fields and a Feynman–Kac formula for boson–fermion interactions. Helv. Phys. Acta 46, 227–302 (1973). doi: 10.5169/seals-114484 MathSciNetGoogle Scholar
  40. 40.
    Sylvester, J.J.: A word on nonions. Johns Hopkins Univ. Circ. 1(17), 241–242 (1882).
  41. 41.
    Sylvester, J.J.: On quaternions, nonions, sedenions, etc. Johns Hopkins Univ. Circ. 3(27), 7–9 (1883).
  42. 42.
    Trefethen L.N., Embree M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)Google Scholar
  43. 43.
    Vaezi A.: Fractional topological superconductor with fractionalized Majorana fermions. Phys. Rev. B 87, 035132 (2013). doi: 10.1103/PhysRevB.87.035132 CrossRefADSGoogle Scholar
  44. 44.
    Yamazaki, K.: On projective representations and ring extensions of finite groups. J. Fac. Sci Univ. Tokyo Sect. I 10, 147–195 (1964).

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA
  2. 2.Department of PhysicsUniversity of BaselBaselSwitzerland
  3. 3.JARA Institute for Quantum InformationRWTH Aachen UniversityAachenGermany

Personalised recommendations