Communications in Mathematical Physics

, Volume 337, Issue 1, pp 225–252 | Cite as

Smirnov’s Observable for Free Boundary Conditions, Interfaces and Crossing Probabilities

  • Konstantin IzyurovEmail author


We prove convergence results for variants of Smirnov’s fermionic observable in the critical planar Ising model in the presence of free boundary conditions. One application of our analysis is a simple proof of a theorem by Hongler and Kytölä on convergence of critical Ising interfaces with plus–minus–free boundary conditions to dipolar SLE(3), and a generalization of this result to an arbitrary number of arcs carrying plus, minus or free boundary conditions. Another application is a computation of scaling limits of crossing probabilities in the critical FK-Ising model with an arbitrary number of alternating wired/free boundary arcs. We also deduce a new crossing formula for the spin Ising model.


Ising Model Marked Point Conformal Invariance Harmonic Measure Free Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BDH14.
    Benoist, S., Duminil-Copin, H., Hongler, C.: Conformal invariance of crossing probabilities for the Ising model with free boundary conditions (2014). arXiv:1410.3715
  2. BBH05.
    Bauer, M., Bernard, D., Houdayer, J.: Dipolar stochastic Loewner evolution. J. Stat. Mech. Theory Exp. (3), P03001 (2005)Google Scholar
  3. BBK05.
    Bauer M., Bernard D., Kytölä K.: Multiple Schramm–Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5), 1125–1163 (2005)CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. CN06.
    Camia F., Newman C.: Two-dimensional critical percolation: the full scaling limit. Commun. Math. Phys. 268(1), 1–38 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. CHI15.
    Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. 181(3), 1087–1138 (2015)Google Scholar
  6. CDH13.
    Chelkak, D., Duminil-Copin, H., Hongler, C.: Crossing probabilities in topological rectangles for the critical planar FK-Ising model (2013). arXiv:1312.7785
  7. ChSm11.
    Chelkak D., Smirnov S.: Discrete complex analysis on isoradial graphs. Adv. Math. 228(3),1590–1630 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. ChSm12.
    Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Inv. Math. 189(3), 515–580 (2012)CrossRefADSzbMATHMathSciNetGoogle Scholar
  9. CDHKS13.
    Chelkak D., Duminil-Copin H., Hongler C., Kemppainen A., Smirnov S.: Convergence of Ising interfaces to Schramms sle curves. C. R. Math. 352(2), 157–161 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  10. Dub07.
    Dubédat J.: Commutation relations for Schramm-Loewner evolutions. CPAM 60(12), 1792–1847 (2007)zbMATHGoogle Scholar
  11. Dub09.
    Dubédat J.: Sle and the free field: partition functions and couplings. J. AMS 22, 995–1054 (2009)ADSzbMATHGoogle Scholar
  12. FK15.
    Flores, S., Kleban, P.: A solution space for a system of null-state partial differential equations: Parts I-IV. Commun. Math. Phys. 333(1), 389–481; 333(2), 597–715 (2015)Google Scholar
  13. Hon10.
    Hongler C.: Conformal invariance of Ising model correlations. Ph.D. thesis, Geneva (2010)Google Scholar
  14. HK13.
    Hongler C., Kytölä K.: Ising interfaces and free boundary conditions. J. AMS 26, 1107–1189 (2013)zbMATHGoogle Scholar
  15. Izy11.
    Izyurov, K.: Holomorphic spinor observables and interfaces in the critical Ising model. Ph. D. Thesis, University of Geneva (2011)Google Scholar
  16. Izy13.
    Izyurov, K.: Critical Ising interfaces in multiply-connected domains (2013). arXiv:1309.5302
  17. IK13.
    Izyurov K., Kytölä K.: Hadamard’s formula and couplings of sles with free fields. Probab. Theor. Relat. Fields 155(1–2), 35–69 (2013)CrossRefzbMATHGoogle Scholar
  18. KS09.
    Kemppainen, A., Smirnov, S.: Random curves, scaling limits and Loewner evolutions (2012). arXiv:1212.6215
  19. Kyt07.
    Kytölä, K.: Virasoro module structure of local martingales of SLE variants. Rev. Math. Phys. 19, 455–509 (2007)Google Scholar
  20. KP14.
    Kytölä, K., Peltola, E.: Conformally covariant boundary correlation functions with a quantum group (2014). arXiv:1408.1384
  21. Law05.
    Lawler, G.F.: Conformally Invariant Processes in the Plane. AMS, Providence (2005)Google Scholar
  22. LK07.
    Lawler G.F., Kozdron M.: The configuration measure on mutually avoiding sle paths. Fields Inst. Commun. 50, 199–224 (2007)MathSciNetGoogle Scholar
  23. LSW03.
    Lawler G.F., Schramm O., Werner W.: Conformal restriction: the chordal case. J. AMS 16(2003), 917–955 (2003)zbMATHMathSciNetGoogle Scholar
  24. LSW04.
    Lawler G.F., Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Prob. 32(1B), 939–995 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  25. Sch00.
    Schramm O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118(1), 221–288 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  26. SS05.
    Schramm O., Sheffield S.: Harmonic explorer and its convergence to sle4. Ann. Probab. 33(6), 2127–2148 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  27. SS09.
    Schramm O., Sheffield S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202, 21–137 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  28. SW05.
    Schramm O., Wilson D.B.: SLE coordinate changes. N. Y. J. Math. 11, 659–669 (2005)Google Scholar
  29. Smi01.
    Smirnov S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. I 333(3), 239–244 (2001)CrossRefADSzbMATHGoogle Scholar
  30. Smi06.
    Smirnov, S.: Towards conformal invariance of 2D lattice models. In: International Congress of Mathematicians, vol. II, pp. 1421–1451. European Mathematical Society, Zürich (2006)Google Scholar
  31. Smi10.
    Smirnov S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. (2) 172(2), 1435–1467 (2010)CrossRefzbMATHGoogle Scholar
  32. Zha08.
    Zhan D.: The scaling limits of planar LERW in finitely connected domains. Ann. Prob. 36(2), 467–529 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.HelsinkiFinland

Personalised recommendations