Skip to main content
Log in

Quantum Fourier Transforms and the Complexity of Link Invariants for Quantum Doubles of Finite Groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Knot and link invariants naturally arise from any braided Hopf algebra. We consider the computational complexity of the invariants arising from an elementary family of finite-dimensional Hopf algebras: quantum doubles of finite groups [denoted \({{\mathsf{D}(G)}}\), for a group G]. These induce a rich family of knot invariants and, additionally, are directly related to topological quantum computation.

Regarding algorithms for these invariants, we develop quantum circuits for the quantum Fourier transform over \({{\mathsf{D}(G)}}\); in general, we show that when one can uniformly and efficiently carry out the quantum Fourier transform over the centralizers Z(g) of the elements of G, one can efficiently carry out the quantum Fourier transform over \({{\mathsf{D}(G)}}\). We apply these results to the symmetric groups to yield efficient circuits for the quantum Fourier transform over \({{\mathsf{D}(S_n)}}\). With such a Fourier transform, it is straightforward to obtain additive approximation algorithms for the related link invariant.

As for hardness results, first we note that in contrast to those concerning the Jones polynomial—where the images of the braid group representations are dense in the unitary group—the images of the representations arising from \({{\mathsf{D}(G)}}\) are finite. This important difference appears to be directly reflected in the complexity of these invariants. While additively approximating “dense” invariants is \({{\mathsf{BQP}}}\)-complete and multiplicatively approximating them is \({{\#\mathsf{P}}}\)-complete, we show that certain \({{\mathsf{D}(G)}}\) invariants (such as \({{\mathsf{D}(A_n)}}\) invariants) are \({{\mathsf{BPP}}}\)-hard to additively approximate, \({{\mathsf{SBP}}}\)-hard to multiplicatively approximate, and \({{\#\mathsf{P}}}\)-hard to exactly evaluate. To show this, we prove that, for groups (such as A n ) which satisfy certain properties, the probability of success of any randomized computation can be approximated to within any \({\varepsilon}\) by the plat closure.

Finally, we make partial progress on the question of simulating anyonic computation in groups uniformly as a function of the group size. In this direction, we provide efficient quantum circuits for the Clebsch–Gordan transform over \({{\mathsf{D}(G)}}\) for “fluxon” irreps, i.e., irreps of \({{\mathsf{D}(G)}}\) characterized by a conjugacy class of G. For general irreps, i.e., those which are associated with a conjugacy class of G and an irrep of a centralizer, we present an efficient implementation under certain conditions, such as when there is an efficient Clebsch–Gordan transform over the centralizers (this could be a hard problem for some groups). We remark that this also provides a simulation of certain anyonic models of quantum computation, even in circumstances where the group may have size exponential in the size of the circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, S.: Quantum computing, postselection, and probabilistic polynomial-time. In: Proceedings of the Royal Society A, p. 0412187 (2005)

  2. Aharonov, D., Arad, I.: The BQP-hardness of approximating the Jones polynomial. Technical Report quant-ph/0605181v1, Quant-ph e-print archive (2006). http://arxiv.org/abs/quant-ph/0605181

  3. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the Jones polynomial. In: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, STOC ’06, pp. 427–436, New York, NY, USA (2006). ACM. doi:10.1145/1132516.1132579

  4. Alagic, G., Jordan, S.P., König, R., Reichardt, B.W.: Estimating Turaev–Viro three-manifold invariants is universal for quantum computation. Phys. Rev. A 82, 040302 (2010). doi:10.1103/PhysRevA.82.040302

  5. Alexander J.W.: A lemma on systems of knotted curves. Proc. Natl. Acad. Sci. (USA) 9, 93–95 (1923)

    Article  ADS  Google Scholar 

  6. Mix Barrington D.A., Straubing H., Thérien D.: Non-uniform automata over groups. Inform. Comput. 89(2), 109–132 (1990). doi:10.1016/0890-5401(90)90007-5

    Article  MATH  Google Scholar 

  7. Beals, R.: Quantum computation of Fourier transforms over symmetric groups. In: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, STOC ’97, pp. 48–53, New York, NY, USA (1997). ACM. ISBN 0-89791-888-6. doi:10.1145/258533.258548

  8. Birman J.S.: On the stable equivalence of plat representations of knots and links. Can. J. Math. 28, 264–290 (1976). doi:10.4153/CJM-1976-030-1

    Article  MATH  MathSciNet  Google Scholar 

  9. Birman, J.S., Menasco, W.W.: Studying links via closed braids. i. a finiteness theorem. Pacific J. Math. 154(1), 17–36 (1992). http://projecteuclid.org/euclid.pjm/1102635729

  10. Böhler, E., Glaßer, C., Meister, D.: Error-bounded probabilistic computations between MA and AM. In: Rovan, B., Vojtás, P. (eds.) Mathematical Foundations of Computer Science 2003, 28th International Symposium (MFCS 2003), volume 2747 of Lecture Notes in Computer Science, pp. 249–258. Springer, Berlin (2003)

  11. Bordewich M., Freedman M., Lovász L., Welsh D.: Approximate counting and quantum computation. Comb. Prob. Comput. 14(5–6), 737–754 (2005). doi:10.1017/S0963548305007005

    Article  MATH  Google Scholar 

  12. Curtis C.W., Reiner I.: Representation Theory of Finite Groups and Associative Algebras. Ams Chelsea Publishing. AMS Chelsea Pub., New York (1962)

    MATH  Google Scholar 

  13. Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi hope algebras, group cohomology and orbifold models. Nuclear Phys. B Proc. Suppl. 18(2), 60–72 (1991). ISSN 0920-5632. doi:10.1016/0920-5632(91)90123-V. http://www.sciencedirect.com/science/article/pii/092056329190123V

  14. Etingof, P., Rowell, E., Witherspoon, S.: Braid group representations from twisted quantum doubles of finite groups. Pac. J. Math. 234(1), 33–41 (2007). http://arxiv.org/abs/math/0703274

  15. Franko J.M., Rowell E.C., Wang Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15(413), 595–615 (2006). doi:10.1142/S0218216506004580 ISSN 1793-6527

    MathSciNet  Google Scholar 

  16. Freedman M.H., Kitaev A., Wang Z.: Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227, 587 (2002). doi:10.1007/s002200200635

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Freedman M.H., Larsen M., Wang Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227, 605–622 (2002). doi:10.1007/s002200200645

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Freedman M.H., Kitaev A., Larsen M.J., Wang Z.: Topological quantum computation. Bull. Am. Math. Soc. (NS) 40(1), 31–38 (2003). doi:10.1090/S0273-0979-02-00964-3

    Article  MATH  MathSciNet  Google Scholar 

  19. Garnerone S., Marzuoli A., Rasetti M.: Quantum geometry and quantum algorithms. J. Phys. A Math. Theor. 40(12), 3047 (2007). doi:10.1088/1751-8113/40/12/S10

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Gould M.D.: Quantum double finite groups algebras and their representations. Bull. Austr. Math. Soc. 48, 275–301 (1993)

    Article  MATH  Google Scholar 

  21. Hastings M., Nayak C., Wang Z.: Metaplectic anyons, majorana zero modes and their applications. Phys. Rev. B 87, 165421 (2013). doi:10.1103/PhysRevB.87.165421

    Article  ADS  Google Scholar 

  22. Hastings M., Nayak C., Wang Z.: On metaplectic modular categories and their applications. Commun. Math. Phys. 330, 45–68 (2014). doi:10.1007/s0020-014-2044-7

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Johnson D.: Homomorphs of knot groups. Proc. Am. Math. Soc. 78(1), 135–138 (1980)

    Article  MATH  Google Scholar 

  24. Kassel C.: Quantum Groups, Volume 155 of Graduate Texts in Mathematics. Springer, New York (1995)

    Google Scholar 

  25. Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003). doi:10.1016/S0003-4916(02)00018-0

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Koenig, R., Kuperberg, G., Reichardt, B.: Quantum computation with Turaev–Viro codes. Ann. Phys. 325(12), 2707–2749 (2010). ISSN 0003-4916. doi:10.1016/j.aop.2010.08.001. http://www.sciencedirect.com/science/article/pii/S0003491610001375

  27. Kuperberg, G.: How hard is it to approximate the Jones polynomial? Technical Report http://arxiv.org/abs/0908.0512v1, Quant-ph e-print archive (2009). http://arxiv.org/abs/0908.0512

  28. Majid, S.: A Quantum Groups Primer, Volume 292 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2002). doi:10.1017/CBO9780511549892

  29. Markov A.A.: Uber die freie Aquivalenz geschlosserner Zopfe. Recueil Mathematique Moscou 1, 73–78 (1935)

    Google Scholar 

  30. Maurer W.D., Rhodes John L.: A property of finite non-Abelian simple groups. Proc. Am. Math. Soc. 16, 552–554 (1965)

    Article  MATH  Google Scholar 

  31. Mochon C.: Anyons from non-solvable finite groups are sufficient for universal quantum computation. Phys. Rev. A 67, 022315 (2003). doi:10.1103/PhysRevA.67.022315

    Article  ADS  Google Scholar 

  32. Mochon C.: Anyon computers with smaller groups. Phys. Rev. A 69, 032306 (2004). doi:10.1103/PhysRevA.69.032306

    Article  ADS  Google Scholar 

  33. Walter Ogburn, R., Preskill, J.: Topological quantum computation. In: QCQC, pp. 341–356 (1998). doi:10.1007/3-540-49208-9_31

  34. Pachos, J.K.: Introduction to Topological Quantum Computation. Cambridge University Press, UK (2012). ISBN 9781107005044. http://books.google.com/books?id=XDciVh6bAE0C

  35. Preskill, J.: Topological quantum computation. Chapter 9 of Lecture Notes on Quantum Computation (2004). http://www.theory.caltech.edu/~preskill/ph219/

  36. Rowell, E.: Two paradigms for topological quantum computation. Advances in Quantum Computation: Representation Theory, Quantum Field Theory, Category Theory, Mathematical Physics, and Quantum Information Theory, September 20–23, 2007, University of Texas at Tyler. In: Mahdavi, K., Koslover, D. (eds.) Contemporary mathematics—American Mathematical Society. American Mathematical Society, USA (2009)

  37. Rowell E.C., Wang Z.: Localization of unitary braid group representations. Commun. Math. Phys. 311(3), 595–615 (2012). doi:10.1007/s00220-011-1386-7 ISSN 0010-3616

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Serre J.P.: Linear representations of finite groups, volume 42 of Graduate texts in mathematics. Springer, Berlin (1977)

    Book  Google Scholar 

  39. Tsohantjis I., Gould M.D.: Quantum double finite group algebras and link polynomials. Bull. Austr. Math. Soc. 49, 177–204 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wocjan P., Yard J.: The Jones polynomial: quantum algorithms and applications in quantum complexity theory. Quantum Inform. Comput. 8(1–2), 147–180 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Krovi.

Additional information

Communicated by A. Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krovi, H., Russell, A. Quantum Fourier Transforms and the Complexity of Link Invariants for Quantum Doubles of Finite Groups. Commun. Math. Phys. 334, 743–777 (2015). https://doi.org/10.1007/s00220-014-2285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2285-5

Keywords

Navigation