Skip to main content
Log in

Phase Transitions and Equilibrium Measures in Random Matrix Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The paper is devoted to a study of phase transitions in the Hermitian random matrix models with a polynomial potential. In an alternative equivalent language, we study families of equilibrium measures on the real line in a polynomial external field. The total mass of the measure is considered as the main parameter, which may be interpreted also either as temperature or time. Our main tools are differentiation formulas with respect to the parameters of the problem, and a representation of the equilibrium potential in terms of a hyperelliptic integral. Using this combination we introduce and investigate a dynamical system (system of ODEs) describing the evolution of families of equilibrium measures. On this basis we are able to systematically derive a number of new results on phase transitions, such as the local behavior of the system at all kinds of phase transitions, as well as to review a number of known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez, G., Martínez Alonso, L., Medina, E.: Phase transitions in multi-cut matrix models and matched solutions of Whitham hierarchies. J. Stat. Mech. Theory Exp. (3) P03023, 38 (2010)

  2. Andrić I., Jonke L., Jurman D.: Homolumo gap and matrix model. Phys. Rev. D 77, 127701 (2008)

    Article  ADS  Google Scholar 

  3. Aptekarev, A.I., Buslaev, V.I., Martínez–Finkelshten, A., Suetin, S.: Padé approximants, continued fractions, and orthogonal polynomials. Uspekhi Mat. Nauk 66(6), 37–122 (2011); English translation in Russ. Math. Surveys 66(6), 1049–1131 (2011)

  4. Aptekarev A.I., Rykov Y.G.: On a variational representation of solutions of a hyperbolic system of equations by means of the logarithmic potential in an external field. Dokl. Akad. Nauk 409(1), 12–14 (2006)

    MathSciNet  Google Scholar 

  5. Aptekarev A.I., Rykov Y.G.: On the variational representation of solutions to some quasilinear equations and systems of hyperbolic type on the basis of potential theory. Russ. J. Math. Phys. 13(1), 4–12 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aptekarev, A.I., Van Assche, W.: Asymptotics of discrete orthogonal polynomials and the continuum limit of the Toda lattice. J. Phys. A 34(48), 10627–10637 (2001). Symmetries and integrability of difference equations (Tokyo, 2000)

  7. Baik J., Kriecherbauer T., McLaughlin K.T.-R., Miller P.D.: Discrete orthogonal polynomials. Annals of Mathematics Studies, vol. 164. Princeton University Press, Princeton (2007)

    Google Scholar 

  8. Bertola M., Eynard B., Harnad J.: Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Commun. Math. Phys. 263(2), 401–437 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Bertola M., Lee S.Y.: First colonization of a spectral outpost in random matrix theory. Constr. Approx. 30(2), 225–263 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bitsadze, A.V.: Equations of mathematical physics. Mir, Moscow, 1980. Translated from the Russian by V. M. Volosov and I. G. Volosova

  11. Bleher P., Eynard B.: Double scaling limit in random matrix models and a nonlinear hierarchy of differential equations. J. Phys. A 36(12), 3085–3105 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Bleher P., Its A.: Double scaling limit in the random matrix model: the Riemann–Hilbert approach. Commun. Pure Appl. Math. 56(4), 433–516 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bleher P., Its A.R.: Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problems, and universality in the matrix model. Ann. Math. 150, 185–266 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bleher, P.M.: Lectures on random matrix models: the Riemann–Hilbert approach. In: Harnad, J. (ed.) Random Matrices, random processes, and integrable systems. CRM Series in Mathematical physics (2011). arXiv:0801.1858 [math]

  15. Bleher P.M., Its A.R.: Asymptotics of the partition function of a random matrix model. Ann. Inst. Fourier (Grenoble) 55(6), 1943–2000 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bleher P.M., Kuijlaars A.B.J.: Large n limit of Gaussian random matrices with external source. III. Double scaling limit. Commun. Math. Phys. 270(2), 481–517 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Bonnet G., David F., Eynard B.: Breakdown of universality in multi-cut matrix models. J. Phys. A 33(38), 6739–6768 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Borodin, A.: Determinantal point processes. In: The Oxford Handbook of Random Matrix Theory, pp. 231–249. Oxford Univ. Press, Oxford (2011)

  19. Borodin, A., Gorin, V.: Lectures on Integrable Probability. arXiv:1212.3351 [math]

  20. Borodin A., Olshanski G.: Distributions on partitions, point processes, and the hypergeometric kernel. Commun. Math. Phys. 211(2), 335–358 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Boutet de Monvel A., Pastur L., Shcherbina M.: On the statistical mechanics approach in the random matrix theory: integrated density of states. J. Stat. Phys. 79(3-4), 585–611 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Brézin E., Itzykson C., Parisi G., Zuber J.B.: Planar diagrams. Commun. Math. Phys. 59(1), 35–51 (1978)

    Article  ADS  MATH  Google Scholar 

  23. Buyarov, V.S.: Logarithmic asymptotics of polynomials that are orthogonal on \({\mathbb{R}}\) with nonsymmetric weight. Mat. Zametki, 50(2), 28–36, 160 (1991); English transl. Math. Notes, 50(1–2), 789–795 (1992)

  24. Buyarov V.S., Rakhmanov E.A.: On families of measures that are balanced in the external field on the real axis. Mat. Sb. 190(6), 11–22 (1999)

    Article  MathSciNet  Google Scholar 

  25. Cicuta, G.M., Molinari, L.G.: Phase transitions. In: The Oxford handbook of random matrix theory, pp. 290–309. Oxford Univ. Press, Oxford (2011)

  26. Claeys, T.: Birth of a cut in unitary random matrix ensembles. Int. Math. Res. Not. IMRN (6):Art. ID rnm166, 40 (2008)

  27. Claeys T., Kuijlaars A.B.J., Vanlessen M.: Multi-critical unitary random matrix ensembles and the general Painlevé II equation. Ann. Math. (2) 168(2), 601–641 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Claeys T., Vanlessen M.: Universality of a double scaling limit near singular edge points in random matrix models. Commun. Math. Phys. 273(2), 499–532 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Deift P., Zhou X.: A Steepest descent method for oscillatory Riemann–Hilbert problems: asymptotics for the MKdV equations. Ann. Math. 137, 295–368 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Deift P., Its A., Zhou X.: A Riemann–Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann. Math. (2) 146(1), 149–235 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Deift P., Venakides S., Zhou X.: New result in small dispersion KdV by an extension of the steepest descent method for Riemann–Hilbert problems. IMRN 6, 285–299 (1997)

    Google Scholar 

  32. Deift, P., McLaughlin, K.T.-R.: A continuum limit of the Toda lattice. Mem. Am. Math. Soc. 131(624) (1998)

  33. Deift P., Kriecherbauer T., McLaughlin K.T.-R.: New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J. Approx. Theory 95(3), 388–475 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335–1425 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  35. Deift P.A.: Orthogonal polynomials and random matrices: a Riemann–Hilbert approach. New York University Courant Institute of Mathematical Sciences, New York (1999)

    Google Scholar 

  36. Deo, N.: Glassy random matrix models. Phys. Rev. E (3) 65(5), 056115, 10 (2002)

  37. Dragnev P., Saff E.B.: Constrained Energy Problems with Applications to Orthogonal Polynomials of a Discrete Variable. J. d’Analyse Mathématique 72, 229–265 (1997)

    Article  MathSciNet  Google Scholar 

  38. Dubrovin B.: Periodic problems for the Korteweg–de Vries equation in the class of finite band potentials. Funct. Anal. Appl. 9, 215–223 (1975)

    Article  Google Scholar 

  39. Duits M., Kuijlaars A.B.J.: Painlevé I asymptotics for orthogonal polynomials with respect to a varying quartic weight. Nonlinearity 19(10), 2211–2245 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Dyson, F.J.: Statistical theory of the energy levels of complex systems. I, II, and III. J. Math. Phys. 3, 140–156; 157–165; 166–175 (1962)

  41. Ercolani, N.M., McLaughlin, K.D.T.-R.: Asymptotics of the partition function for random matrices via Riemann–Hilbert techniques and applications to graphical enumeration. Int. Math. Res. Not. 14, 755–820 (2003)

  42. Eynard, B.: Universal distribution of random matrix eigenvalues near the ‘birth of a cut’ transition. J. Stat. Mech. Theory Exp. 7, P07005 (2006, electronic)

  43. Eynard, B.: Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence. J. High Energy Phys. (3) 003, 20 (2009)

  44. Flaschka H., Forest M., McLaughlin D.H.: Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equations. Commun. Pure Appl. Math. 33, 739–784 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Flume, R., Klitz, A.: A new type of critical behaviour in random matrix models. J. Stat. Mech. Theory Exp. (10), N10001 3 (2008)

  46. Gakhov, F.D.: Boundary Value Problems. Dover, New York (1990). Translated from Russian, reprint of the 1966 translation

  47. Gonchar, A.A., Lopes, G.: Markov’s theorem for multipoint Padé approximants Mat. Sb. (N.S.) 105(147)(4), 51–524, 639 (1978)

  48. Gonchar, A.A., Rakhmanov, E.A.: On the convergence of simultaneous Padé approximants for systems of functions of Markov type. Number theory, mathematical analysis and their applications. Trudy Mat. Inst. Steklov 157, 31–48, 234 (1981)

  49. Gonchar, A.A., Rakhmanov, E.A.: Equilibrium measure and the distribution of zeros of extremal polynomials. Mat. Sbornik 125(2), 117–127 (1984). Translation from Mat. Sb., Nov. Ser. 134(176), No.3(11), 306–352 (1987)

  50. Gonchar, A.A., Rakhmanov, E.A.: Equilibrium distributions and degree of rational approximation of analytic functions. Math. USSR Sbornik 62(2), 305–348 (1987). Translation from Mat. Sb., Nov. Ser. 134(176), No.3(11), 306–352 (1987)

  51. Grava T.: Whitham equations, Bergmann kernel and Lax–Levermore minimizer. Acta Appl. Math. 82(1), 1–86 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Grava T.: Partition function for multi-cut matrix models. J. Phys. A 39(28), 8905–8919 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Grava T., Tian F.-R.: Large parameter behavior of equilibrium measures. Commun. Math. Sci. 4(3), 551–573 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  54. Gross D.J., Witten E.: Possible third-order phase transition in the large-N lattice gauge theory. Phys. Rev. D 21, 446–453 (1980)

    Article  ADS  Google Scholar 

  55. Its, A.R., Kuijlaars, A.B.J., Östensson, J.: Critical edge behavior in unitary random matrix ensembles and the thirty-fourth Painlevé transcendent. Int. Math. Res. Not. IMRN (9), Art. ID rnn017, 67 (2008)

  56. Jenkins, J.A.: Univalent functions and conformal mapping. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie. Springer, Berlin (1958)

  57. Johansson K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  58. Johansson, K.: Random matrices and determinantal processes. In Mathematical statistical physics, pp. 1–55. Elsevier, Amsterdam (2006)

  59. Kamvissis, S., McLaughlin, K.T.-R., Miller, P.D.: Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation. Ann. Math. Stud., vol. 154, Princeton Univ. Press, Princeton (2003)

  60. Komlov, A.V., Suetin, S.P.: Widom’s formula for the leading coefficient of a polynomial that is orthonormal with respect to a variable weight (in Russian). Uspekhi Mat. Nauk 67(1), 183–184 (2012); English translation in Russian Math. Surveys 67(1), 183–185 (2012)

  61. Komlov A.V., Suetin S.P.: Asymptotic formula for orthonormal polynomial with respect to a varying weight (in Russian). Trudy Mat. Inst. Steklov 73(2), 175–200 (2012)

    Google Scholar 

  62. König W.: Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2, 385–447 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  63. Krichever I.M.: The averaging method for two-dimensional “integrable” equations. Funct. Anal. Appl. 22(3), 200–213 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  64. Krishnaswami, G.S.: Phase transition in matrix model with logarithmic action: toy-model for gluons in baryons. J. High Energy Phys. (3), 067 (2006, electronic)

  65. Kuijlaars, A.B.J., Rakhmanov, E.A.: Zero distributions for discrete orthogonal polynomials. Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997), J. Comput. Appl. Math. 99(1–2), 255–274 (1998). Corrigendum in J. Comput. Appl. Math. 104(2), 213 (1999)

  66. Kuijlaars A.B.J., Van Assche W.: Extremal polynomials on discrete sets. Proc. Lond. Math. Soc. (3) 79(1), 191–221 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  67. Kuijlaars A.B.J., McLaughlin K.T.-R.: Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields. Commun. Pure Appl. Math. 53(6), 736–785 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  68. Landkof N.S.: Foundations of Modern Potential Theory. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1972)

    Book  Google Scholar 

  69. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation. I, II, III. Commun. Pure Appl. Math. 36(5), 253–290, 571–593, 809–829 (1983)

  70. López, G., Rakhmanov, E.A.: Rational approximations, orthogonal polynomials and equilibrium distributions. In: Orthogonal polynomials and their applications (Segovia, 1986). Lecture Notes in Math., vol. 1329, pp. 125–157. Springer, Berlin (1988)

  71. Lubinsky D.S., Mhaskar H.N., Saff E.B.: A proof of Freud’s conjecture for exponential weights. Constr. Approx. 4(1), 65–83 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  72. Lubinsky, D.S., Saff, E.B.: Strong asymptotics for extremal polynomials associated with weights on \({\mathbf{R}}\). In: Lecture Notes in Mathematics, vol. 1305. Springer, Berlin (1988)

  73. Marchal, O., Cafasso, M.: Double-scaling limits of random matrices and minimal (2m, 1) models: the merging of two cuts in a degenerate case. J. Stat. Mech. Theory Exp. P04013 (2011)

  74. Martínez-Finkelshtein A., Martinez-González P., Orive R.: Asymptotics of polynomial solutions of a class of generalized Lamé differential equations. Electron. Trans. Numer. Anal. 19, 18–28 (2005)

    MATH  MathSciNet  Google Scholar 

  75. Martínez-Finkelshtein, A., Rakhmanov, E.A.: On asymptotic behavior of Heine–Stieltjes and Van Vleck polynomials. In: Recent Trends in Orthogonal Polynomials and Approximation Theory. Contemp. Math., vol. 507. pp. 209–232. Amer. Math. Soc., Providence (2010)

  76. Martínez-Finkelshtein A., Rakhmanov E.A.: Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials. Commun. Math. Phys. 302(1), 53–111 (2011)

    Article  ADS  MATH  Google Scholar 

  77. Martínez-Finkelshtein A., Saff E.B.: Asymptotic properties of Heine–Stieltjes and Van Vleck polynomials. J. Approx. Theory 118(1), 131–151 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  78. McLeod J.B., Wang C.B.: Eigenvalue density in Hermitian matrix models by the Lax pair method. J. Phys. A Math. Theor. 42, 205205 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  79. Mehta, M.L.: Random matrices. Pure and Applied Mathematics, vol. 142, 3rd edn. Academic Press, New York (2004)

  80. Mhaskar H.N., Saff E.B.: Where does the sup norm of a weighted polynomial live? (A generalization of incomplete polynomials). Constr. Approx. 1, 71–91 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  81. Mo, M.Y.: The Riemann–Hilbert approach to double scaling limit of random matrix eigenvalues near the “birth of a cut” transition. Int. Math. Res. Not. IMRN (13), Art. ID rnn042, 51 (2008)

  82. Muskhelishvili, N.I.: Singular integral equations. Boundary problems of function theory and their application to mathematical physics. Dover Publications Inc., New York (1992). Translated from the second (1946) Russian edition and with a preface by J.R.M. Radok. Corrected reprint of the 1953 English translation

  83. Nikishin, E.M., Sorokin, V.N.: Rational approximations and orthogonality. In: Translations of Mathematical Monographs, vol. 92. American Mathematical Society, Providence (1991) Translated from the Russian by Ralph P. Boas

  84. Nuttall J.: Asymptotics of diagonal Hermite–Padé polynomials. J. Approx. Theory 42(4), 299–386 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  85. Nuttall J., Singh S.R.: Orthogonal polynomials and Padé approximants associated with a system of arcs. J. Approx. Theory 21(1), 1–42 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  86. Orive R., García Z.: On a class of equilibrium problems in the real axis. J. Comput. Appl. Math. 235(4), 1065–1076 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  87. Rakhmanov, E.A.: The convergence of diagonal Padé approximants. Mat. Sb. (N.S.), 104 (146)(2 (10)), 271–291, 335 (1977). English translation: Math. USSR-Sb. 33(2), 243–260 (1977)

  88. Rakhmanov E.A.: Asymptotic properties of polynomials that are orthogonal on the real axis. Dokl. Akad. Nauk SSSR 261(2), 282–284 (1981)

    MathSciNet  Google Scholar 

  89. Rakhmanov, E.A.: Asymptotic properties of orthogonal polynomials on the real axis. Mat. Sb. (N.S.) 119(161)(2), 163–203, 303 (1982). English transl.: Math. USSR-Sb. 47, 155–193 (1984)

  90. Rakhmanov, E.A.: Strong asymptotics for orthogonal polynomials. In: Methods of approximation theory in complex analysis and mathematical physics (Leningrad, 1991). Lecture Notes in Math., vol. 1550, pp. 71–97. Springer, Berlin (1993)

  91. Rakhmanov, E.A.: Uniform measure and distribution of zeros of extremal polynomials of a discrete variable. Mat. Sb., 187(8), 109–124 (1996); English transl. Sb. Math., 187(8), 1213–1228 (1996)

  92. Rakhmanov E.A.: Orthogonal polynomials and S-curves. Recent advances in orthogonal polynomials, special functions, and their applications. Contemp. Math. 578, 195–239 (2012)

    Article  MathSciNet  Google Scholar 

  93. Saff E.B., Totik V.: Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenschaften, vol. 316. Springer, Berlin (1997)

    Book  Google Scholar 

  94. Schiffer M., Spencer D.C.: Functionals of Finite Riemann Surfaces. Princeton University Press, Princeton (1954)

    MATH  Google Scholar 

  95. Shapiro B.: Algebro-geometric aspects of Heine–Stieltjes theory. J. Lond. Math. Soc. 83, 36–56 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  96. Shapiro B., Takemura K., Tater M.: On spectral polynomials of the Heun equation. II. Commun. Math. Phys. 311(2), 277–300 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  97. Simon B.: Equilibrium measures and capacities in spectral theory. Inverse Probl. Imaging 1(4), 713–772 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  98. Soshnikov A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  99. Stahl, H.: Orthogonal polynomials of complex-valued measures and the convergence of Padé approximants. In: Fourier Analysis and Approximation Theory (Proc. Colloq., Budapest, 1976), vol. II. Colloq. Math. Soc. János Bolyai, vol. 19, pp. 771–788. North-Holland, Amsterdam (1978)

  100. Stahl, H.: Orthogonal polynomials with complex-valued weight function. I, II. Constr. Approx. 2(3), 225–240, 241–251 (1986)

  101. Stahl H., Totik V.: General orthogonal polynomials. Encyclopedia of Mathematics and its Applications, vol. 43. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  102. Stieltjes T.J.: Sur certains polynômes que vérifient une équation différentielle linéaire du second ordre et sur la teorie des fonctions de Lamé. Acta Math. 6, 321–326 (1885)

    Article  MATH  MathSciNet  Google Scholar 

  103. Strebel K.: Quadratic differentials. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 5. Springer, Berlin (1984)

    Google Scholar 

  104. Suetin, S.P.: On the dynamics of “wandering” zeros of polynomials orthogonal on some segments. Uspekhi Mat. Nauk, 57(2(344)), 199–200 (2002). Translation in Russian Math. Surveys 57(2), 425–427 (2002)

  105. Tovbis A., Venakides S., Zhou X.: On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 57(7), 877–985 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  106. Tovbis, A., Venakides, S., Zhou, X.: Semiclassical focusing nonlinear Schrödinger equation I: inverse scattering map and its evolution for radiative initial data. Int. Math. Res. Not. IMRN 2007, no. 22, Art. ID rnm094, 54 pp

  107. van Moerbeke, P.: Random and integrable models in mathematics and physics. In: Random matrices, random processes and integrable systems, CRM Ser. Math. Phys., pp. 3–130. Springer, New York (2011)

  108. Venakides S.: The zero dispersion limit of the Korteweg de Vries equation for initial potential with nontrivial reflection coefficient. Commun. Pure Appl. Math. 38, 125–155 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  109. Wang C.B.: Application of Integrable Systems to Phase Transitions. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  110. Weyl, H.: The classical groups. In: Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997). Their invariants and representations, Fifteenth printing, Princeton Paperbacks

  111. Yeomans J.M.: Statistical Mechanics of Phase Transitions. Oxford University Press, London (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martínez-Finkelshtein.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Finkelshtein, A., Orive, R. & Rakhmanov, E.A. Phase Transitions and Equilibrium Measures in Random Matrix Models. Commun. Math. Phys. 333, 1109–1173 (2015). https://doi.org/10.1007/s00220-014-2261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2261-0

Keywords

Navigation