Communications in Mathematical Physics

, Volume 334, Issue 2, pp 533–628 | Cite as

A Combinatorial Approach to Nonlocality and Contextuality

  • Antonio Acín
  • Tobias Fritz
  • Anthony Leverrier
  • Ana Belén Sainz
Article

Abstract

So far, most of the literature on (quantum) contextuality and the Kochen–Specker theorem seems either to concern particular examples of contextuality, or be considered as quantum logic. Here, we develop a general formalism for contextuality scenarios based on the combinatorics of hypergraphs, which significantly refines a similar recent approach by Cabello, Severini and Winter (CSW). In contrast to CSW, we explicitly include the normalization of probabilities, which gives us a much finer control over the various sets of probabilistic models like classical, quantum and generalized probabilistic. In particular, our framework specializes to (quantum) nonlocality in the case of Bell scenarios, which arise very naturally from a certain product of contextuality scenarios due to Foulis and Randall. In the spirit of CSW, we find close relationships to several graph invariants. The recently proposed Local Orthogonality principle turns out to be a special case of a general principle for contextuality scenarios related to the Shannon capacity of graphs. Our results imply that it is strictly dominated by a low level of the Navascués–Pironio–Acín hierarchy of semidefinite programs, which we also apply to contextuality scenarios.

We derive a wealth of results in our framework, many of these relating to quantum and supraquantum contextuality and nonlocality, and state numerous open problems. For example, we show that the set of quantum models on a contextuality scenario can in general not be characterized in terms of a graph invariant.

In terms of graph theory, our main result is this: there exist two graphs \({G_1}\) and \({G_2}\) with the properties
$$\begin{array}{ll}\qquad \qquad \alpha(G_1) \; = \; \Theta(G_1), \qquad \qquad \alpha(G_2) \,= \; \vartheta(G_2), \\ \Theta(G_1\boxtimes G_2) \, > \; \Theta(G_1) \cdot \Theta(G_2),\quad \Theta(G_1 + G_2) \, > \Theta(G_1) + \Theta(G_2).\end{array}$$

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky S., Brandenburger A.: The sheaf-theoretic structure of non-locality and contextuality. N. J. Phys. 13(11), 113036 (2011)CrossRefGoogle Scholar
  2. 2.
    Abramsky, S., Mansfield, S., Barbosa, R.S.: The cohomology of non-locality and contextuality, In: Proceedings 8th International Workshop on Quantum Physics and Logic (Nijmegen, 2011) (2011)Google Scholar
  3. 3.
    Alon N.: The Shannon capacity of a union. Combinatorica 18(3), 301–310 (1998)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Alon, N., Lubetzky, E.: The Shannon capacity of a graph and the independence numbers of its powers. IEEE Trans. Inf. Theory 52(5), (2006)Google Scholar
  5. 5.
    Amaral B., Cunha M.T., Adán C.: The exclusivity principle forbids sets of correlations larger than the quantum set. Phys. Rev. A 89, 030101 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Anderson I.: Combinatorics of Finite Sets. Oxford University Press, Oxford (1987)MATHGoogle Scholar
  7. 7.
    Anjos M.F.: On semidefinite programming relaxations for the satisfiability problem. Math. Methods Oper. Res. 60(3), 349–367 (2004)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Araújo M., Quintino M.T., Budroni C., Cunha M.T., Cabello A.: All noncontextuality inequalities for the n-cycle scenario. Phys. Rev. A 88, 022118 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Avis D., Imai H., Ito T.: On the relationship between convex bodies related to correlation experiments with dichotomic observables. J. Phys. A 39, 11283 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Bachoc C., Pécher A., Thiéry A.: On the theta number of powers of cycle graphs. Combinatorica 33(3), 297–317 (2013)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Barnum, H., Fuchs, C.A., Renes, J.M., Wilce, A.: Influence-free states on compound quantum systems (2005). arXiv:quant-ph/0507108
  12. 12.
    Barrett J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75(3), 032304 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Barrett J., Leifer M.: The de Finetti theorem for test spaces. N. J. Phys. 11(3), 033024 (2009)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Barrett J., Pironio S.: Popescu-rohrlich correlations as a unit of nonlocality. Phys. Rev. Lett. 95, 140401 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Bell J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  16. 16.
    Berge, C.: Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wiss. Z. Martin- Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10(114) (1961)Google Scholar
  17. 17.
    Berge C.: Motivations and history of some of my conjectures. Discrete Math. 165–166, 61–70 (1997)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Brouwer A.E., Haemers W.: Spectra of Graphs. Springer, Berlin (2011)Google Scholar
  19. 19.
    Brunner N., Cavalcanti D., Pironio S., Scarani V., Wehner S.: Bell nonlocality. Rev. Mod. Phys. 86(419), (2014)Google Scholar
  20. 20.
    Cabello A.: Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101(21), 210401 (2008)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Cabello, A.: Specker’s fundamental principle of quantum mechanics (2012). arXiv:1212.1756
  22. 22.
    Cabello A.: A simple explanation of the quantum violation of a fundamental inequality. Phys. Rev. Lett. 110, 060402 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Cabello A.: Twin inequality for fully contextual quantum correlations. Phys. Rev. A 87, 010104 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Cabello A., Danielsen L.E., López-Tarrida A.J., Portillo J.R.: Basic exclusivity graphs in quantum correlations. Phys. Rev. A 88, 032104 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Cabello A., Estebaranz J., García-Alcaine G.: Bell–Kochen–Specker theorem: a proof with 18 vectors. Phys. Lett. A 212(4), 183–187 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Cabello, A., Severini, S., Winter, A.: (Non-)Contextuality of physical theories as an axiom (2010). arXiv:1010.2163. Updated version: Phys. Rev. Lett. 112, 040401 (2014)
  27. 27.
    Chaves R., Fritz T.: Entropic approach to local realism and noncontextuality. Phys. Rev. A 85(3), 032113 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Chudnovsky M., Robertson N., Seymour P., Thomas R.: The strong perfect graph theorem. Ann. Math. (2) 164(1), 51–229 (2006)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Clauser J.F., Horne M.A., Shimony A., Holt R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)ADSCrossRefGoogle Scholar
  30. 30.
    Codenotti B., Gerace I., Resta G.: Some remarks on the Shannon capacity of odd cycles. Ars Combinatoria 66, 243–257 (2003)MATHMathSciNetGoogle Scholar
  31. 31.
    Coecke, B., Moore, D., Wilce, A.: Operational quantum logic: an overview. Curr. Res. Oper. Quantum Logic, 1–36 (2000)Google Scholar
  32. 32.
    D’Ariano, G.M.: Probabilistic theories: what is special about quantum mechanics? Philosophy of Quantum Information and Entanglement (2010)Google Scholar
  33. 33.
    Edmonds J., Fulkerson D. R.: Bottleneck extrema. J. Combin. Theory 8(3), 299–306 (1970)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Eiter T.: Exact transversal hypergraphs and application to Boolean \({\mu}\)-functions. J. Symbolic Comput. 17(3), 215–225 (1994)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Engel K.: Sperner Theory, Encyclopedia of Mathematics and its Applications, vol. 65. Cambridge University Press, Cambridge (1997)Google Scholar
  36. 36.
    Fekete M.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 17(1), 228–249 (1923)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Fine A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48(5), 291–295 (1982)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    Foulis D., Piron C., Randall C.: Realism, operationalism and quantum mechanics. Found. Phys. 13(8), 813–841 (1983)ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    Foulis D.J., Greechie R.J., Rüttimann G.T.: Filters and supports in orthoalgebras, Internat. J. Theoret. Phys. 31(5), 789–807 (1992)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Foulis D.J., Randall C.H.: Operational statistics. I. Basic concepts. J. Math. Phys. 13, 1667–1675 (1972)ADSCrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Foulis, D.J., Randall, C.H.: Empirical logic and tensor products 5, 9–20 (1981)Google Scholar
  42. 42.
    Foulis D.J., Randall, C.H.: What are quantum logics and what ought they to be? Current Issues in Quantum Logic, pp. 35–52 (1981)Google Scholar
  43. 43.
    Fritz T.: Tsirelson’s problem and Kirchberg’s conjecture. Rev. Math. Phys. 24, 1250012 (2012)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Fritz T., Chaves R.: Entropic inequalities and the marginal problem. IEEE Trans. Inf. Theory 59, 803–817 (2013)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Fritz T., Netzer T., Thom A.: Can you compute the operator norm?. Proc. Am. Math. Soc. 142, 4265–4276 (2014)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Fritz T., Sainz A., Augusiak R., Brask J.B., Chaves R., Leverrier A., Acín A.: Local orthogonality: a multipartite principle for correlations. Nature Comm. 4, 2263 (2012)Google Scholar
  47. 47.
    Fritz, T., Sainz, A.B., Leverrier, A.: Probabilistic models on contextuality scenarios (2013). arXiv:1307.0145
  48. 48.
    Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions: a survey. In: Mathematical Foundations of Computer Science, pp. 37–57 (2001)Google Scholar
  49. 49.
    Greechie R.J.: Orthomodular lattices admitting no states. J. Combin. Theory Ser. A 10, 119–132 (1971)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Greenberger D.M., Horne M.A., Shimony A., Zeilinger A.: Bell’s theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)ADSCrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Grötschel M., Padberg M.W.: On the symmetric travelling salesman problem. I. Inequalities. Math. Program. 16(3), 265–280 (1979)CrossRefMATHGoogle Scholar
  52. 52.
    Haag R.: Local quantum physics. Texts and Monographs in Physics, 2nd ed. Springer, Berlin (1996)CrossRefGoogle Scholar
  53. 53.
    Haemers W.: On some problems of Lovász concerning the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25(2), 231–232 (1979)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Haemers, W.: An upper bound for the Shannon capacity of a graph. In: Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978), pp. 267–272 (1981)Google Scholar
  55. 55.
    Henson, J.: Quantum contextuality from a simple principle? (2012). arXiv:1210.5978
  56. 56.
    Imrich, W., Klavz̆ar, S. (eds): Product Graphs: Structure and Recognition. Wiley-Intersciene, New York (2000)Google Scholar
  57. 57.
    Junge M., Navascués M., Palazuelos C., Pérez-García D., Scholz V.B., Werner R.F.: Connes embedding problem and Tsirelson’s problem. J. Math. Phys. 52(1), 012102, 12 (2011)CrossRefGoogle Scholar
  58. 58.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vol. I. Pure and Applied Mathematics, Elementary Theory, vol. 100. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1983)Google Scholar
  59. 59.
    Karp, R.M.: Reducibility Among Combinatorial Problems, pp. 85–103 (1972)Google Scholar
  60. 60.
    Klyachko A.A., Can M.A., Binicioglu S., Shumovsky A.S.: A simple test for hidden variables in spin-1 system. Phys. Rev. Lett. 101, 020403–020406 (2008)ADSCrossRefMathSciNetGoogle Scholar
  61. 61.
    Knuth DcE.: The sandwich theorem. Electron. J. Comb. 1, A1 (1994)Google Scholar
  62. 62.
    Kochen S., Specker E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)MATHMathSciNetGoogle Scholar
  63. 63.
    Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear 0–1 programs. SIAM J. Optim. 12(3), 756–769 (2002) (electronic).Google Scholar
  64. 64.
    Laurent M.: A comparison of the Sherali-adams, Lovász–Schrijver and Lasserre relaxations for 0-1 programming. Math. Oper. Res. 28(3), 470–496 (2003)CrossRefMATHMathSciNetGoogle Scholar
  65. 65.
    Liang Y.-C., Spekkens Robert W., Wiseman Howard M.: Specker’s parable of the overprotective seer: a road to contextuality, nonlocality and complementarity. Phys. Rep. 506(1–2), 1–39 (2011)ADSCrossRefMathSciNetGoogle Scholar
  66. 66.
    Lisonĕk, P., Badziąg, P., Portillo, J., Cabello, A.: The simplest Kochen–Specker set (2013). arXiv:1308.6012
  67. 67.
    Lovász L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2(3), 253–267 (1972)CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Lovász L.: Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A 25(3), 319–324 (1978)CrossRefMATHMathSciNetGoogle Scholar
  69. 69.
    Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25(1), 1–7 (1979)CrossRefMATHMathSciNetGoogle Scholar
  70. 70.
    Lane, S.M., Moerdijk, I.: Sheaves in geometry and logic. In: Universitext. Springer, New York (1979). A first introduction to topos theory, Corrected reprint of the 1992 editionGoogle Scholar
  71. 71.
    Naddef D., Pochet Y.: The symmetric traveling salesman polytope revisited. Math. Oper. Res. 26(4), 700–722 (2001)CrossRefMATHMathSciNetGoogle Scholar
  72. 72.
    Navascués, M., Guryanova, Y., Hoban, M., Acín, A.: Almost Quantum Correlations (2014). arXiv:1403.4621
  73. 73.
    Navascués M., Pironio S., Acín A.: Bounding the set of quantum correlations. Phys. Rev. Lett. 98(1), 010401 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    Navascués M., Pironio S., Acín A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. N. J. Phys. 10(7), 073013 (2008)CrossRefGoogle Scholar
  75. 75.
    Pavičić M., McKay B.D., Megill N.D., Fresl K.: Graph approach to quantum systems. J. Math. Phys. 51(10), 102103, 31 (2010)Google Scholar
  76. 76.
    Pavičić M., Merlet J.-P., McKay B., Megill Norman D.: Kochen–Specker vectors. J. Phys. A 38(7), 1577–1592 (2005)ADSCrossRefMATHMathSciNetGoogle Scholar
  77. 77.
    Pironio S.: Lifting bell inequalities. J. Math. Phys. 46, 062112 (2005)ADSCrossRefMathSciNetGoogle Scholar
  78. 78.
    Pironio S., Acín A., Brunner N., Gisin N., Massar S., Scarani V.: Deviceindependent quantum key distribution secure against collective attacks. N. J. Phys. 11, 045021 (2009)CrossRefGoogle Scholar
  79. 79.
    Pironio S., Acín A., Massar S., de la Giroday A.B., Matsukevich D., Maunz P., Olmschenk S., Hayes D., Luo L., Manning T.A., Monroe C.: Random numbers certified by Bell’s theorem. Nature 464, 1021–1024 (2010)ADSCrossRefGoogle Scholar
  80. 80.
    Pironio S., Navascués M., Acín A.: Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010)CrossRefMATHMathSciNetGoogle Scholar
  81. 81.
    Popescu S., Rohrlich D.: Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994)ADSCrossRefMathSciNetGoogle Scholar
  82. 82.
    The Univalent Foundations Program, Homotopy type theory. Self-published (2013). Available at homotopytypetheory.org/bookGoogle Scholar
  83. 83.
    Randall C.H., Foulis D.J.: Operational statistics. II. Manuals of operations and their logics. J. Math. Phys. 14, 1472–1480 (1973)ADSCrossRefMATHMathSciNetGoogle Scholar
  84. 84.
    Sainz A.B., Fritz T., Augusiak R., Brask J.B., Chaves R., Leverrier A., Acín A.: Exploring the Local Orthogonality principle. Phys. Rev. A 89, 032117 (2014)ADSCrossRefGoogle Scholar
  85. 85.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, pp. 216–226 (1978)Google Scholar
  86. 86.
    Schrijver A.: Combinatorial Optimization. Polyhedra and Efficiency, Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)Google Scholar
  87. 87.
    Shannon, C.E.: The zero error capacity of a noisy channel. In: Institute of Radio Engineers. Transactions on Information Theory, IT-2, no. September 8–19 (1956)Google Scholar
  88. 88.
    Shultz F.W.: A characterization of state spaces of orthomodular lattices. J. Combin. Theory Ser. A 17, 317–328 (1974)CrossRefMathSciNetGoogle Scholar
  89. 89.
    Specker, E.: The logic of non-simultaneously decidable propositions (1960). Translation from the German original by M.P. Seevinck (2011), arXiv:1103.4537
  90. 90.
    Spekkens R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71(5), 052108 (2005)ADSCrossRefMathSciNetGoogle Scholar
  91. 91.
    Svozil K.: Randomness & Undecidability in Physics. World Scientific Publishing Co. Inc., River Edge (1993)CrossRefMATHGoogle Scholar
  92. 92.
    Svozil, K., Tkadlec, J.: Greechie diagrams, nonexistence of measures in quantum logics and Kochen–Specker-type constructions. J. Math. Phys. 37(11) (1996)Google Scholar
  93. 93.
    Tarski, A. (ed.): A Decision Method for Elementary Algebra and Geometry 2nd ed. University of California Press, Berkeley and Los Angeles (1951)MATHGoogle Scholar
  94. 94.
    Tkadlec, J.: Diagrams of Kochen–Specker type constructions. Internat. J. Theoret. Phys. 39(3), 921–926 (2000). Quantum structures ’98 (Liptovský Ján)Google Scholar
  95. 95.
    Tsirelson B.S.: Some results and problems on quantum Bell-type inequalities. Hadronic J. Suppl. 8, 329–345 (1993)MATHMathSciNetGoogle Scholar
  96. 96.
    Voloshin V.I.: Introduction to Graph and Hypergraph Theory. Nova Science Publishers Inc., New York (2009)MATHGoogle Scholar
  97. 97.
    V.N. N.: Consistent families of measures and their extensions. Theory of Probability and its Applications 7(2), 147–163 (1962)CrossRefGoogle Scholar
  98. 98.
    Weisstein, E.W.: Generalized quadrangle. From MathWorld-A Wolfram Web Resource, mathworld.wolfram.com/GeneralizedQuadrangle.htmlGoogle Scholar
  99. 99.
    Wilce, A.: Formalism and interpretation in quantum theory, 2008. A slightly edited version of a paper to appear as part of a Festchrift for Jeff BubGoogle Scholar
  100. 100.
    Wilce, A.: Test spaces. In: Handbook of Quantum Logic and Quantum Structures-Quantum Logic, pp. 443–549 (2009)Google Scholar
  101. 101.
    Wolf, M.M., Cubitt, T.S., Perez-García, D.: Are problems in quantum information theory (un)decidable? (2011). http://arxiv.org/abs/1111.5425
  102. 102.
    Wright, R.: The state of the pentagon: a nonclassical example. In: Mathematical Foundations of Quantum Theory (Proc. Conf., Loyola Univ., New Orleans, La., 1977), pp. 255–274 (1978)Google Scholar
  103. 103.
    Yan B.: Quantum correlations are tightly bound by the exclusivity principle. Phys. Rev. Lett. 110, 260406 (2013)ADSCrossRefGoogle Scholar
  104. 104.
    Zeh, H.D.: Quantum nonlocality vs. Einstein locality (2006). http://www.rzuser.uni-heidelberg.de/~as3/nonlocality.html
  105. 105.
    Ziegler G.M.: Lectures on polytopes. In: Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Antonio Acín
    • 1
    • 2
  • Tobias Fritz
    • 3
  • Anthony Leverrier
    • 4
  • Ana Belén Sainz
    • 1
  1. 1.ICFO-Institut de Ciències FotòniquesCastelldefelsSpain
  2. 2.ICREA-Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  4. 4.INRIA Rocquencourt, Domaine de VoluceauLe Chesnay CedexFrance

Personalised recommendations