The Parisi Formula has a Unique Minimizer

Abstract

In 1979, Parisi (Phys Rev Lett 43:1754–1756, 1979) predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington–Kirkpatrick model, and described the role played by its minimizer. This formula was verified in the seminal work of Talagrand (Ann Math 163(1):221–263, 2006) and later generalized to the mixed p-spin models by Panchenko (Ann Probab 42(3):946–958, 2014). In this paper, we prove that the minimizer in Parisi’s formula is unique at any temperature and external field by establishing the strict convexity of the Parisi functional.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Auffinger, A., Chen, W.-K.: On properties of Parisi Measures. To appear in Probab. Theory Relat. Fields. preprint arXiv:1303.3573 (2013)

  2. 2

    Borell, C.: Diffusion equations and geometric inequalities. Potential Anal. 12(1), 49–71 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3

    Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann. Probab. 26(4), 1641–1659 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. 4

    Chen, W.-K.: Partial results on the convexity of the Parisi functional with PDE approach. To appear in Proc. Am. Math. Soc. preprint arXiv:1308.6559 (2013)

  5. 5

    Fleming, W.H.: Exit probabilities and optimal stochastic control. Appl. Math. Optim. 4, 329–346 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. 6

    Ghatak, S., Sherrington, D.: Crystal field effects in a general S Ising spin glass. J. Phys. C Solid State Phys. 10, 3149 (1977)

    Article  ADS  Google Scholar 

  7. 7

    Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys. 233(1), 1–12 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. 8

    Karatzas, I., Shreve, S.: Brownian motion and stochastic calculus. 2nd edn. Graduate Texts in Mathematics, vol. 113. Springer, New York (1991)

  9. 9

    Mézard, M., Parisi, G., Virasoro, M.A.: Spin glass theory and beyond. World Scientific Lecture Notes in Physics, vol. 9, World Scientific Publishing Co. Inc., Teaneck (1987)

  10. 10

    Panchenko, D.: A question about the Parisi functional. Elect. Comm. Prob. 10, 155–166 (2005)

    MATH  MathSciNet  Google Scholar 

  11. 11

    Panchenko, D.: Free energy in the generalized Sherrington–Kirkpatrick mean field model. Rev. Math. Phys. 17(7), 793–857 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. 12

    Panchenko, D.: The Parisi formula for mixed p-spin models. Ann. Probab. 42(3), 946–958 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. 13

    Panchenko, D.: The Sherrington–Kirkpatrick model. Springer Monographs in Mathematics. Springer, New York (2013)

    Google Scholar 

  14. 14

    Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754–1756 (1979)

    Article  ADS  Google Scholar 

  15. 15

    Parisi, G.: A sequence of approximate solutions to the SK model for spin glasses. J. Phys. A. 13, L115 (1980)

    Article  ADS  Google Scholar 

  16. 16

    Sherrington, D., Kirkpatrick, S.: Solvable model of a spin glass. Phys. Rev. Lett. 35, 1792–1796 (1975)

    Article  ADS  Google Scholar 

  17. 17

    Talagrand, M.: Mean field models for spin glasses. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vols. 54, 55. Springer, New York (2011)

  18. 18

    Talagrand, M.: Parisi measures. J. Funct. Anal. 231(2), 269–286 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. 19

    Talagrand, M.: The Parisi formula. Ann. Math. (2) 163(1), 221–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. 20

    Talagrand, M.: Free energy of the spherical mean field model. Probab. Theor. Related Fields 134(3), 339–382 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei-Kuo Chen.

Additional information

The research of A. A. is supported by NSF grant DMS-1407554.

Communicated by F. Toninelli

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Auffinger, A., Chen, WK. The Parisi Formula has a Unique Minimizer. Commun. Math. Phys. 335, 1429–1444 (2015). https://doi.org/10.1007/s00220-014-2254-z

Download citation

Keywords

  • Spin Glass
  • Variational Representation
  • Dominate Convergence Theorem
  • Variational Formula
  • Standard Brownian Motion