Abstract
We show that the new quantum extension of Rényi’s α-relative entropies, introduced recently by Müller-Lennert et al. (J Math Phys 54:122203, 2013) and Wilde et al. (Commun Math Phys 331(2):593–622, 2014), have an operational interpretation in the strong converse problem of quantum hypothesis testing. Together with related results for the direct part of quantum hypothesis testing, known as the quantum Hoeffding bound, our result suggests that the operationally relevant definition of the quantum Rényi relative entropies depends on the parameter α: for α < 1, the right choice seems to be the traditional definition \({{D_\alpha^{(old)}} (\rho \| \sigma) :=\frac{1}{\alpha-1} \,\,{\rm log\,\,Tr}\,\, \rho^{\alpha} \sigma^{1-\alpha}}\), whereas for α > 1 the right choice is the newly introduced version \({D_\alpha^{(new)}} (\rho \| \sigma) := \frac{1}{\alpha-1}\,{\rm log\,\,Tr}\,\big(\sigma^{\frac{1-\alpha}{2 \alpha}}\rho \sigma^{\frac{1-\alpha}{2 \alpha}}\big)^{\alpha}\).On the way to proving our main result, we show that the new Rényi α-relative entropies are asymptotically attainable by measurements for α > 1. From this, we obtain a new simple proof for their monotonicity under completely positive trace-preserving maps.
Similar content being viewed by others
References
Araki H.: On an inequality of Lieb and Thirring. Lett. Math. Phys. 19(2), 167–170 (1990)
Audenaert K.M.R., Nussbaum M., Szkoła A., Verstraete F.: Asymptotic error rates in quantum hypothesis testing. Commun. Math. Phys. 279, 251–283 (2008)
Audenaert K.M.R.: On the Araki–Lieb–Thirring inequality. Int. J. Inf. Syst. Sci. 4, 78–83 (2008)
Beigi S.: Quantum Rényi divergence satisfies data processing inequality. J. Math. Phys. 54, 122202 (2013)
Berta, M., Furrer, F., Scholz, V.B.: The smooth entropy formalism on von Neumann algebras (2011). arXiv:1107.5460
Bhatia R.: Matrix Analysis. Springer, New York (1997)
Bjelakovic I., Krüger T., Siegmund-Schultze R., Szkoła A.: The Shannon–McMillan theorem for ergodic quantum lattice systems. Invent. Math. 155(1), 203–222 (2004)
Bjelakovic I., Siegmund-Schultze R.: An ergodic theorem for the quantum relative entropy. Commun. Math. Phys. 247, 697–712 (2004)
Bjelakovic I., Deuschel J.-D., Krüger T., Seiler R., Siegmund-Schultze R., Szkoła A.: A quantum version of Sanov’s theorem. Commun. Math. Phys. 260(3), 659–671 (2005)
Csiszár I.: Generalized cutoff rates and Rényi’s information measures. IEEE Trans. Inf. Theory 41, 26–34 (1995)
Datta N.: Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009)
Dembo, A., Zeitouni, O.: Large deviations techniques and applications. In: Application of Mathematics, 2nd edn, vol. 38. Springer, New York (1998)
Frank R.L., Lieb E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys 54, 122201 (2013)
Han T.S., Kobayashi K.: The strong converse theorem for hypothesis testing. IEEE Trans. Inf. Theory 35, 178–180 (1989)
Han T.S.: Information-Spectrum Methods in Information Theory. Springer, New York (2003)
Hayashi M.: Optimal sequence of POVM’s in the sense of Stein’s lemma in quantum hypothesis testing. J. Phys. A Math. Gen. 35, 10759–10773 (2002)
Hayashi M.: Quantum Information Theory: An Introduction. Springer, New York (2006)
Hayashi M.: Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding. Phys. Rev. A 76, 062301 (2007)
Hayashi, M.: Private communication (2014)
Hayashi, M., Tomamichel, M.: Private communication (2013)
Hayashi, M., Tomamichel, M.: Correlation detection and an operational interpretation of the Renyi mutual information. arXiv:1408.6894
Hiai F., Petz D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143, 99–114 (1991)
Hiai F.: Equality cases in matrix norm inequalities of Golden–Thompson type. Linear Multilinear Algebra 36, 239–249 (1994)
Hiai F., Mosonyi M., Ogawa T.: Error exponents in hypothesis testing for correlated states on a spin chain. J. Math. Phys. 49, 032112 (2008)
Hiai F., Mosonyi M., Petz D., Bény C.: Quantum f-divergences and error correction. Rev. Math. Phys. 23(7), 691–747 (2011)
Jenčová A., Petz D.: Sufficiency in quantum statistical inference. Commun. Math. Phys. 263, 259–276 (2006)
Jenčová A., Petz D.: Sufficiency in quantum statistical inference. A survey with examples. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, 331–351 (2006)
Jenčová A., Petz D., Pitrik J.: Markov triplets on CCR algebras. Acta Sci. Math. (Szeged) 76, 27–50 (2010)
Lieb E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11, 267–288 (1973)
Lieb, E.H., Thirring, W.: Studies in Mathematical Physics, pp. 269–297. Princeton University Press, Princeton (1976)
Mosonyi M., Hiai F.: On the quantum Rényi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory 57, 2474–2487 (2011)
Mosonyi, M.: Inequalities for the quantum Rényi divergences with applications to compound coding problems (2013). arxiv:1310.7525
Mosonyi, M., Ogawa, T.: The strong converse rate of quantum hypothesis testing for correlated quantum states. arXiv:1407.3567
Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M.: On quantum Renyi entropies: a new definition and some properties. J. Math. Phys. 54, 122203 (2013)
Nagaoka, H.: Strong converse theorems in quantum information theory. In: Proceedings of ERATO Workshop on Quantum Information Science, Tokyo, p. 33 (2001). (Hayashi, M. (ed.) Asymptotic Theory of Quantum Statistical Inference, pp. 64–65. World Scientific (2005)
Nagaoka, H.: The converse part of the theorem for quantum Hoeffding bound. quant-ph/0611289
Nagaoka H., Hayashi M.: An information-spectrum approach to classical and quantum hypothesis testing for simple hypotheses. IEEE Trans. Inf. Theory 53, 534–549 (2007)
Nielsen M.A., Chuang I.L.: Quantum Information and Quantum Computation. Cambridge University Press, Cambridge (2000)
Ogawa T., Nagaoka H.: Strong converse and Stein’s lemma in quantum hypothesis testing. IEEE Trans. Inf. Theory 47, 2428–2433 (2000)
Petz D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23, 57–65 (1986)
Petz D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105, 123–131 (1986)
Petz D.: Sufficiency of channels over von Neumann algebras. Q. J. Math. Oxf. Ser. (2) 39(153), 97–108 (1988)
Petz D.: Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 15(1), 79–91 (2003)
Renner, R.: Security of quantum key distribution. Ph.D. dissertation, Swiss Federal Institute of Technology Zurich, Diss. ETH No. 16242 (2005)
Rényi, A.: On measures of entropy and information. In: Proceedings of 4th Berkeley Sympos. Math. Statist. and Prob., vol. I, pp. 547–561. Univ. California Press, Berkeley (1961)
Tomamichel, M.: A framework for non-asymptotic quantum information theory. Ph.D. thesis, Department of Physics, ETH Zurich. arXiv:1203.2142
Uhlmann A.: The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 9, 273–278 (1976)
Uhlmann A.: Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)
Umegaki H.: Conditional expectation in an operator algebra. Kodai Math. Sem. Rep. 14, 59–85 (1962)
Wilde M.M., Winter A., Yang D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels. Commun. Math. Phys. 331(2), 593–622 (2014)
Winter, A.: Private communication (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. M. Wolf
Rights and permissions
About this article
Cite this article
Mosonyi, M., Ogawa, T. Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies. Commun. Math. Phys. 334, 1617–1648 (2015). https://doi.org/10.1007/s00220-014-2248-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-014-2248-x