Abstract
We study a class of systems of stochastic differential equations describing diffusive phenomena. The Smoluchowski-Kramers approximation is used to describe their dynamics in the small mass limit. Our systems have arbitrary state-dependent friction and noise coefficients. We identify the limiting equation and, in particular, the additional drift term that appears in the limit is expressed in terms of the solution to a Lyapunov matrix equation. The proof uses a theory of convergence of stochastic integrals developed by Kurtz and Protter. The result is sufficiently general to include systems driven by both white and Ornstein–Uhlenbeck colored noises. We discuss applications of the main theorem to several physical phenomena, including the experimental study of Brownian motion in a diffusion gradient.
Similar content being viewed by others
References
Bellman, R.: Introduction to Matrix Analysis, Volume 19 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. Reprint of the second edition, With a foreword by Gene Golub (1970)
Blount D.: Comparison of stochastic and deterministic models of a linear chemical reaction with diffusion. Ann. Probab. 19(4), 1440–1462 (1991)
Brettschneider T., Volpe G., Helden L., Wehr J., Bechinger C.: Force measurement in the presence of brownian noise: equilibrium-distribution method versus drift method. Phys. Rev. E 83, 041113 (2011)
Cerrai S., Freidlin M.: Small mass asymptotics for a charged particle in a magnetic field and long-time influence of small perturbations. J. Stat. Phys. 144, 101–123 (2011)
Duhr S., Braun D.: Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. USA 103, 19678–19682 (2006)
Freidlin M.: Some remarks on the Smoluchowski-Kramers approximation. J. Stat. Phys. 117, 617–634 (2004)
Freidlin M., Hu W.: Smoluchowskikramers approximation in the case of variable friction. J. Math. Sci. 179, 184–207 (2011)
Freidlin M., Hu W., Wentzell A.: Small mass asymptotic for the motion with vanishing friction. Stoch. Process. Appl. 123, 45–75 (2013)
Freidlin M., Weber M.: Perturbations of the motion of a charged particle in a noisy magnetic field. J. Stat. Phys. 147, 565–581 (2012)
Hänggi P.: Nonlinear fluctuations: the problem of deterministic limit and reconstruction of stochastic dynamics. Phys. Rev. A 25, 1130–1136 (1982)
Happel J., Brenner H.: Low Reynolds number hydrodynamics with special applications to particulate media. Prentice-Hall Inc., Englewood Cliffs (1965)
Hottovy S., Volpe G., Wehr J.: Noise-induced drift in stochastic differential equations with arbitrary friction and diffusion in the Smoluchowski-Kramers limit. J. Stat. Phys. 146, 762–773 (2012)
Hottovy S., Volpe G., Wehr J.: Thermophoresis of Brownian particles driven by coloured noise. EPL (Europhys. Lett.) 99, 60002 (2012)
Karatzas I., Shreve S.E.: Brownian Motion and Stochastic Calculus, Volume 113 of Graduate Texts in Mathematics, second edition. Springer, New York (1991)
Kramers H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)
Kupferman R., Pavliotis G.A., Stuart A.M.: Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. Phys. Rev. E 70, 036120 (2004)
Kurtz T.G., Protter P.: Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19, 1035–1070 (1991)
Kwon C., Ao P., Thouless D.J.: Structure of stochastic dynamics near fixed points. Proc. Natl. Acad. Sci. USA 102, 13029–13033 (2005)
Nelson E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)
Øksendal B.: Stochastic Differential Equations: An Introduction with Applications, Universitext, Sixth edition. Springer, Berlin (2003)
Ortega J.M.: Matrix theory. The University Series in Mathematics. Plenum Press, New York (1987) A second course
Papanicolaou A.: Filtering for fast mean-reverting processes. Asymptot. Anal. 70, 155–176 (2010)
Papanicolaou, G.C.: Introduction to the asymptotic analysis of stochastic equations. In: Modern Modeling of Continuum Phenomena (Ninth Summer Sem. Appl. Math., Rensselaer Polytech. Inst., Troy, N.Y., 1975). Lectures in Appl. Math., vol. 16. Amer. Math. Soc., pp. 109–147, Providence, R.I., (1977)
Pardoux È., Veretennikov AY: On Poisson equation and diffusion approximation. I,II,III. Ann. Probab. 31, 1166–1192 (2003)
Pavliotis, G.A.: Multiscale Methods Volume 53 of Texts in Applied Mathematics. Springer, New York. Averaging and homogenization (2008)
Pesce G., Volpe G., De Luca A.C., Rusciano G., Volpe G.: Quantitative assessment of non-conservative radiation forces in an optical trap. EPL (Europhys. Lett.) 86, 38002 (2009)
Piazza R.: Thermophoresis: moving particles with thermal gradients. Soft Matt. 4, 1740–1744 (2008)
Protter P.E.: Stochastic Integration and Differential Equations, Volume 21 of Stochastic Modelling and Applied Probability, Second edition. Springer, Berlin (2005) Version 2.1, Corrected third printing
Revuz D., Yor M.: Continuous Martingales and Brownian Motion, Volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], third edition. Springer, Berlin (1999)
Sancho J.M., San Miguel M., Dürr M.: Adiabatic elimination for systems of Brownian particles with nonconstant damping coefficients. J. Stat. Phys. 28, 291–305 (1982)
Schuss Z.: Theory and Applications of Stochastic Differential Equations, Wiley Series in Probability and Statistics. Wiley, New York (1980)
Shi J., Chen T., Yuan R., Yuan B., Ao P.: Relation of a new interpretation of stochastic differential equations to ito process. J. Stat. Phys. 148, 579–590 (2012)
Simpson N.B., Dholakia K., Allen L., Padgett M.J.: Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22, 52–54 (1997)
Smoluchowski M.: Drei vortrage über diffusion brownsche bewegung and koagulation von kolloidteilchen. Phys. Z. 17, 557–585 (1916)
Toda M., Kubo R., Saitô N.: Statistical physics. I. Equilibrium statistical mechanics, volume 30 of Springer Series in Solid-State Sciences, second edition. Springer, Berlin (1992)
Volpe G., Helden L., Brettschneider T., Wehr J., Bechinger C.: Influence of noise on force measurements. Phys. Rev. Lett. 104, 170602 (2010)
Volpe G., Volpe G., Petrov D.: Singular-point characterization in microscopic flows. Phys. Rev. E 77, 037301 (2008)
Williams D.: Probability with martingales. Cambridge University Press, Cambridge (1991)
Wong E., Zakai M.: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Stat. 36, 1560–1564 (1965)
Zwanzig R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H. Spohn
Rights and permissions
About this article
Cite this article
Hottovy, S., McDaniel, A., Volpe, G. et al. The Smoluchowski-Kramers Limit of Stochastic Differential Equations with Arbitrary State-Dependent Friction. Commun. Math. Phys. 336, 1259–1283 (2015). https://doi.org/10.1007/s00220-014-2233-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-014-2233-4