Skip to main content
Log in

Conformally Equivariant Quantization for Spinning Particles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This work takes place over a conformally flat spin manifold (M, g). We prove existence and uniqueness of the conformally equivariant quantization valued in spinor differential operators, and provide an explicit formula for it when restricted to first order operators. The Poisson algebra of symbols is realized as a space of functions on the supercotangent bundle \({\mathcal{M}=T^*M\oplus\Pi TM}\) , endowed with a symplectic form depending on the metric g. It admits two different actions of the conformal Lie algebra: one tensorial and one Hamiltonian. They are intertwined by the uniquely defined conformally equivariant superization, for which an explicit formula is given. This map allows us to classify all the conformal supercharges of the spinning particle in terms of conformal Killing tensors, which are symmetric, skew-symmetric or with mixed symmetry. Higher symmetries of the Dirac operator are obtained by quantization of the conformal supercharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson L., Bäckdahl T., Blue P.: Second order symmetry operators. Class. Quant. Grav. 31(13), 135015 (2014)

    Article  ADS  Google Scholar 

  2. Ballesteros À., Enciso A., Herranz F.J., Ragnisco O., Riglioni D.: Quantum mechanics on spaces of nonconstant curvature: The oscillator problem and superintegrability. Ann. Phys. 326(8), 2053–2073 (2011)

  3. Benn I.M., Charlton P.: Dirac symmetry operators from conformal Killing - Yano tensors. Class. Quant. Grav. 14(5), 1037 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Benn I.M., Kress J.M.: First-order Dirac symmetry operators. Class. Quant. Grav. 21(2), 427 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Berezin F.A., Marinov M.S.: Particle spin dynamics as the grassmann variant of classical mechanics. Ann. Phys. 104, 336–362 (1977)

    Article  ADS  MATH  Google Scholar 

  6. Boe B.D., Collingwood D.H.: A comparison theory for the structure of induced representations. J. Algebra 94(2), 511–545 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boe B.D., Collingwood D.H.: A comparison theory for the structure of induced representations. II.. Math. Z. 190(1), 1–11 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bordemann, M.: The deformation quantization of certain super-Poisson brackets and BRST cohomology. In: Conférence Moshé Flato 1999, vol II (Dijon), vol. 22. Math. Phys. Stud. Kluwer Acad. Publ., Dordrecht, pp. 45–68 (2000)

  9. Čap A., Šilhan J.: Equivariant quantizations for AHS-structures. Adv. Math. 224(4), 1717–1734 (2010)

  10. Cariglia M., Krtouš P., Kubizňák D.: Dirac equation in Kerr-NUT-(A)dS spacetimes: Intrinsic characterization of separability in all dimensions. Phys. Rev. D 84, 024008 (2011)

    Article  ADS  Google Scholar 

  11. Carter B.: Killing tensor quantum numbers and conserved currents in curved space. Phys. Rev. D (3) 16(12), 3395–3414 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  12. Duval C., El Gradechi A.M., Ovsienko V.Yu.: Projectively and conformally invariant star-products. Commun. Math. Phys. 244(1), 3–27 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Duval C., Lecomte P.B.A., Ovsienko V.Yu.: Conformally equivariant quantization: existence and uniqueness. Ann. Inst. Fourier (Grenoble) 49(6), 1999–2029 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duval C., Ovsienko V.Yu.: Conformally equivariant quantum Hamiltonians. Selecta Math. (N.S.) 7(3), 291–320 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duval, C., Valent, G.: Quantum integrability of quadratic Killing tensors. J. Math. Phys. 46(5), 053516 (2005)

  16. Duval C., Valent G.: A new integrable system on the sphere and conformally equivariant quantization. J. Geom. Phys. 61(8), 1329–1347 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Eastwood M.G.: Higher symmetries of the Laplacian. Ann. of Math. (2) 161(3), 1645–1665 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fegan H.D.: Conformally invariant first order differential operators. Quart. J. Math. Oxford (2) 27(107), 371–378 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Getzler E.: Pseudodifferential operators on supermanifolds and the Atiyah–Singer index theorem. Commun. Math. Phys. 92(2), 163–178 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gibbons G.W., Rietdijk R.H., Van Holten J.W.: SUSY in the sky. Nucl. Phys. B 404(1-2), 42–64 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hallowell K., Waldron A.: Constant curvature algebras and higher spin action generating functions. Nucl. Phys. B 724, 453 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hallowell, K., Waldron, A.: The symmetric tensor Lichnerowicz algebra and a novel associative Fourier–Jacobi algebra. SIGMA 3:Paper 089, 12 (2007)

  23. Hallowell K., Waldron A.: Supersymmetric quantum mechanics and super-Lichnerowicz algebras. Commun. Math. Phys. 278(3), 775–801 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Homma Y.: Spinor-valued and Clifford algebra-valued harmonic polynomials. J. Geom. Phys. 37(3), 201–215 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313(2), 539–570 (1989). Erratum Trans. Am. Math. Soc. 318(2), 823 (1990)

  26. Kosmann Y.: Dérivées de Lie des spineurs. Ann. Mat. Pura Appl. (4) 91, 317–395 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kubizňák D., Cariglia M.: Integrability of spinning particle motion in higher-dimensional rotating black hole spacetimes. Phys. Rev. Lett. 108, 051104 (2012)

    Article  ADS  Google Scholar 

  28. Lecomte P.B.A., Ovsienko V.Yu.: Projectively equivariant symbol calculus. Lett. Math. Phys. 49(3), 173–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lu, D., Howe, R.: The dual pair (O p,q ,OS P2,2) and Maxwell’s equations. In: Casimir force, Casimir operators and the Riemann hypothesis. Walter de Gruyter, Berlin, pp. 105–133 (2010)

  30. Manin, Yu.I.: Gauge field theory and complex geometry volume 289 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1988). Translated from the Russian by N. Koblitz and J. R. King.

  31. Mathonet P., Radoux F.: On natural and conformally equivariant quantizations. J. Lond. Math. Soc. II. Ser. 80(1), 256–272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Michel, J.-Ph.: Higher symmetries of Laplacian via quantization. Ann. Inst. Fourier (2014, to appear)

  33. Michel, J.-Ph.: Quantification conformément équivariante des fibrés supercotangents. PhD thesis, Université Aix-Marseille II (2009). Electronically available as tel-00425576

  34. Michel J.-Ph.: Conformal geometry of the supercotangent and spinor bundles. Commun. Math. Phys. 312(2), 303–336 (2012)

    Article  ADS  MATH  Google Scholar 

  35. Michel, J.-Ph.: Conformally equivariant quantization - a complete classification. SIGMA 8:Paper 022 (2012)

  36. Michel, J.-Ph., Radoux, F., Šilhan, J.: Second order symmetries of the conformal Laplacian. SIGMA 10:Paper 016 (2014)

  37. Michel, J.-Ph., Somberg, P., Šilhan, J.: Prolongation of symmetric Killing tensors and commuting symmetries of the Laplace operator. arXiv:1403.7226

  38. Papapetrou A.: Spinning test-particles in general relativity. I.. Proc. Roy. Soc. Lond. Ser. A. 209, 248–258 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Ravndal F.: Supersymmetric Dirac particles in external fields. Phys. Rev. D (3) 21(10), 2823–2832 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  40. Rothstein, M.: The structure of supersymplectic supermanifolds. In Differential geometric methods in theoretical physics (Rapallo, 1990). In: Lecture Notes in Physics, vol. 375. Springer, Berlin, pp. 331–343 (1991)

  41. Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. In Quantization, Poisson brackets and beyond (Manchester, 2001), vol. 315. Contemp. Math. Amer. Math. Soc., Providence, pp. 169–185 (2002)

  42. Šilhan, J.: Conformally invariant quantization - towards complete classification. Differ. geom. appl. 33(0), 162–176 (2014). The interaction of geometry and representation theory. Exploring new frontiers

  43. Tanimoto M.: The role of Killing–Yano tensors in supersymmetric mechanics on a curved manifold. Nucl. Phys. B 442(3), 549–560 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Voronov, F.F.: Quantization on supermanifolds and an analytic proof of the Atiyah–Singer index theorem. In Current problems in mathematics. Newest results, vol. 38 (Russian) Itogi Nauki i Tekhniki, pp. 3–118, 186. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1990). Translated in J. Soviet Math. 64(4), 993–1069 (1993)

  45. Weyl, H.: The classical groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. Their invariants and representations, Fifteenth printing, Princeton Paperbacks

  46. Widom H.: A complete symbolic calculus for pseudodifferential operators. Bull. Sci. Math. (2) 104(1), 19–63 (1980)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Michel.

Additional information

Communicated by N. A. Nekrasov

I thank the Luxembourgian NRF for support via the AFR grant PDR-09-063. This research has been also partially funded by the Interuniversity Attraction Poles Program initiated by the Belgian Science Policy Office.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, JP. Conformally Equivariant Quantization for Spinning Particles. Commun. Math. Phys. 333, 261–298 (2015). https://doi.org/10.1007/s00220-014-2229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2229-0

Keywords

Navigation