Skip to main content
Log in

Finite Higher Spin Transformations from Exponentiation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the exponentiation of elements of the gauge Lie algebras hs(λ) of three-dimensional higher spin theories. Exponentiable elements generate one-parameter groups of finite higher spin symmetries. We show that elements of hs(λ) in a dense set are exponentiable, when pictured in certain representations of hs(λ), induced from representations of \({SL(2,\mathbb{R})}\) in the complementary series. We also provide a geometric picture of higher spin gauge transformations clarifying the physical origin of these representations. This allows us to construct an infinite-dimensional topological group HS(λ) of finite higher spin symmetries. Interestingly, this construction is possible only for 0 ≤ λ ≤  1, which are the values for which the higher spin theory is believed to be unitary and for which the Gaberdiel–Gopakumar duality holds. We exponentiate explicitly various commutative subalgebras of hs(λ). Among those, we identify families of elements of hs(λ) exponentiating to the unit of HS(λ), generalizing the logarithms of the holonomies of BTZ black hole connections. Our techniques are generalizable to the Lie algebras relevant to higher spin theories in dimensions above three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasiliev M.A.: Unfolded representation for relativistic equations in (2+1) anti-De Sitter space. Class. Quantum Gravity 11, 649–664 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  2. Vasiliev, M.A.: Higher spin matter interactions in (2+1)-dimensions. Nucl. Phys. B Proc. Suppl. 56(3), 241–252 (1997). arXiv:hep-th/9607135

  3. Vasiliev, M.A.: Higher spin gauge theories in four-dimensions, three-dimensions, and two-dimensions. Int. J. Mod. Phys. D 5, 763–797 (1996). arXiv:hep-th/9611024

  4. Bekaert, X., Cnockaert, S., Iazeolla, C., Vasiliev, M.: Nonlinear higher spin theories in various dimensions. arXiv:hep-th/0503128

  5. Bekaert, X.: Comments on higher-spin symmetries. Int. J. Geom. Methods Mod. Phys. 6, 285–342 (2009). arXiv:0807.4223

  6. Joung, E., Mkrtchyan, K.: Notes on higher-spin algebras: minimal representations and structure constants. JHEP 1405, 103 (2014). arXiv:1401.7977

  7. Gaberdiel, M.R., Gopakumar, R.: An AdS3 dual for minimal model CFTs. Phys. Rev. D 83, 066007 (2011). arXiv:1011.2986

  8. Gaberdiel, M.R., Gopakumar, R.: Minimal model holography. J. Phys. A 46, 214002 (2013). arXiv:1207.6697

  9. Campoleoni, A., Fredenhagen, S., Pfenninger, S., Theisen, S.: Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields. JHEP 1011, 007 (2010). arXiv:1008.4744

  10. Campoleoni, A., Prochazka, T., Raeymaekers, J.: A note on conical solutions in 3D Vasiliev theory. JHEP 1305, 052 (2013). arXiv:1303.0880

  11. Gaberdiel, M.R., Jin, K., Perlmutter, E.: Probing higher spin black holes from CFT. JHEP 1310, 045 (2013). arXiv:1307.2221

  12. Nelson E., Stinespring W.F.: Representation of elliptic operators in an enveloping algebra. Am. J. Math. 81(3), 547–560 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  13. Witten E.: (2+1)-dimensional gravity as an exactly soluble system. Nucl. Phys. B311, 46 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gutperle, M., Kraus, P.: Higher spin black holes. JHEP 1105, 022 (2011). arXiv:1103.4304

  15. Kraus, P., Perlmutter, E.: Probing higher spin black holes. JHEP 1302, 096 (2013). arXiv:1209.4937

  16. Michel, J.-P.: Higher symmetries of the Laplacian via quantization. arXiv:1107.5840

  17. Pope C., Romans L., Shen X.: W and the Racah–Wigner algebra. Nucl. Phys. B339, 191–221 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gaberdiel, M.R., Jin, K., Li, W.: Perturbations of W(infinity) CFTs. JHEP 1310, 162 (2013). arXiv:1307.4087

  19. Bowcock, P., Watts, G.: On the classification of quantum W algebras. Nucl. Phys. B 379, 63–95 (1992). arXiv:hep-th/9111062

  20. Gaberdiel, M.R., Hartman, T.: Symmetries of holographic minimal models. JHEP 1105, 031 (2011). arXiv:1101.2910

  21. Campoleoni, A., Fredenhagen, S., Pfenninger, S.: Asymptotic W-symmetries in three-dimensional higher-spin gauge theories. JHEP 1109, 113 (2011). arXiv:1107.0290

  22. Dixmier J.: Quotients simples de l’algèbre enveloppante de sl(2). J. Algebra 24, 551–564 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. Luminet D.: Norms on enveloping algebras. Proc. Am. Math. Soc. 101, 65–66 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kac, V.G.: Laplace operators of infinite-dimensional Lie algebras and theta functions. Proc. Nat. Acad. Sci. USA 81(2), 645–647 (1984)

  25. Alekseev, A., Monnier, S.: Quantization of Wilson loops in Wess–Zumino–Witten models. JHEP 08, 039 (2007). arXiv:hep-th/0702174

  26. Knapp A.: Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton Mathematical Series. Princeton University Press, New Jersey (2001)

    Google Scholar 

  27. Leigh, R.G., Parrikar, O., Weiss, A.B.: The holographic geometry of the renormalization group and higher spin symmetries. Phys. Rev. D 89, 106012 (2014). arXiv:1402.1430

  28. Breitenlohner P., Freedman D.Z.: Stability in gauged extended supergravity. Ann. Phys. 144, 249 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Sardanashvily, G.: Fibre Bundles, Jet Manifolds and Lagrangian Theory. Lectures for Theoreticians. arXiv:0908.1886

  30. Rausch de Traubenberg, M., Slupinski, M.J., Tanasa, A.: Finite-dimensional Lie subalgebras of the Weyl algebra. J. Lie Theory 16, 427–454 (2006). arXiv:math/0504224

  31. Bargmann V.: Irreducible unitary representations of the Lorentz group. Ann. Math. 48(3), 568–640 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  32. Reed M., Simon B.: Methods of Modern Mathematical Physics: Functional Analysis. Methods of Modern Mathematical Physics. Academic Press, New York (1980)

    Google Scholar 

  33. Schottenloher, M.: The unitary group in its strong topology. arXiv:1309.5891

  34. Glockner, H.: Fundamental problems in the theory of infinite-dimensional Lie groups. arXiv:math/0602078

  35. Schmüdgen K.: Unbounded Operator Algebras and Representation Theory. Operator Theory, Advances and Applications. Birkhäuser, Boston (1990)

    Google Scholar 

  36. Weidmann J.: Linear Operators in Hilbert Spaces. Graduate Texts in Mathematics. Springer, Berlin (1980)

    Book  Google Scholar 

  37. Everitt W., Markus L.: Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-Differential Operators. Mathematical Surveys and Monographs. American Mathematical Society, Providence (1999)

    Google Scholar 

  38. Ahn, C.: The large N ’t Hooft limit of coset minimal models. JHEP 1110, 125 (2011). arXiv:1106.0351

  39. Gaberdiel, M.R., Vollenweider, C.: Minimal model holography for SO(2N). JHEP 1108, 104 (2011). arXiv:1106.2634

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Monnier.

Additional information

Communicated by H. Ooguri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monnier, S. Finite Higher Spin Transformations from Exponentiation. Commun. Math. Phys. 336, 1–26 (2015). https://doi.org/10.1007/s00220-014-2220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2220-9

Keywords

Navigation