Skip to main content

Dislocation Dynamics in Crystals: A Macroscopic Theory in a Fractional Laplace Setting

Abstract

We consider an evolution equation arising in the Peierls–Nabarro model for crystal dislocation. We study the evolution of such a dislocation function and show that, at a macroscopic scale, the dislocations have the tendency to concentrate at single points of the crystal, where the size of the slip coincides with the natural periodicity of the medium. These dislocation points evolve according to the external stress and an interior repulsive potential.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Alicandro, R., De Luca, L., Garroni, A., Ponsiglione, M.: Metastability and dynamics of discrete topological singularities in two dimensions: a Γ-convergence approach. Arch. Ration. Mech. Anal., to appear

  2. 2

    Alvarez O., Hoch P., Le Bouar Y., Monneau R.: Dislocation dynamics: short-time existence and uniqueness of the solution. Arch. Ration. Mech. Anal. 181(3), 449–504 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3

    Barrios, B., Figalli, A., Valdinoci, E.: Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XIII, 1–31 (2014)

  4. 4

    Barles G., Imbert C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 567–585 (2008)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  5. 5

    Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc., to appear

  6. 6

    Da Lio F., Forcadel N., Monneau R.: Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics. J. Eur. Math. Soc. (JEMS) 10(4), 1061–1104 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7

    Denoual C.: Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods. Phys. Rev. B 70, 024106 (2004)

    ADS  Article  Google Scholar 

  8. 8

    Di Nezza E., Palatucci G., Valdinoci E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. 9

    Forcadel N., Imbert C., Monneau R.: Homogenization of some particle systems with two-body interactions and of the dislocation dynamics. Discrete Contin. Dyn. Syst. 23(3), 785–826 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. 10

    Garroni A., Müller S.: Γ-limit of a phase-field model of dislocations. SIAM J. Math. Anal. 36(6), 1943–1964 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11

    González M.d.M., Monneau R.: Slow motion of particle systems as a limit of a reaction–diffusion equation with half-Laplacian in dimension one. Discrete Contin. Dyn. Syst. 32(4), 1255–1286 (2012)

    MATH  MathSciNet  Google Scholar 

  12. 12

    Grant C.P.: Slow motion in one-dimensional Cahn–Morral systems. SIAM J. Math. Anal. 26(1), 21–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. 13

    Hirth, J.P., Lothe, J.: Theory of Dislocations, Reprint edition, pp 872. Krieger Publishing Company, Malabar, FL, USA (1992)

  14. 14

    Imbert C.: Level set approach for fractional mean curvature flows. Interf. Free Bound. 11, 153–176 (2009)

    Article  MathSciNet  Google Scholar 

  15. 15

    Lu G.: The Peierls–Nabarro model of dislocations: a venerable theory and its current development. In: Yip, S. (ed.) Handbook of Materials Modeling, pp. 793–811. Springer, USA (2005)

    Chapter  Google Scholar 

  16. 16

    Monneau R., Patrizi S.: Homogenization of the Peierls–Nabarro model for dislocation dynamics. J. Differ. Equ. 253(7), 2064–2105 (2012)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  17. 17

    Movchan A.B., Bullough R., Willis J.R.: Stability of a dislocation: discrete model. Eur. J. Appl. Math. 4(8), 373–396 (1998)

    Article  Google Scholar 

  18. 18

    Nabarro F.R.N.: Fifty-year study of the Peierls–Nabarro stress. Mat. Sci. Eng. A 234–236, 67–76 (1997)

    Article  Google Scholar 

  19. 19

    Palatucci G., Savin O., Valdinoci E.: Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat. Pura Appl. (4) 192(4), 673–718 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. 20

    Servadei R., Valdinoci E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58(1), 133–154 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21

    Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Ph.D. Thesis, University of Texas at Austin (2005)

  22. 22

    Silvestre L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. 23

    Toland J.F.: The Peierls–Nabarro and Benjamin–Ono equations. J. Funct. Anal. 145(1), 136–150 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. 24

    Wei H., Xiang Y., Ming P.: A generalized Peierls–Nabarro model for curved dislocations using discrete Fourier transform. Commun. Comput. Phys. 4(2), 275–293 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giampiero Palatucci.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dipierro, S., Palatucci, G. & Valdinoci, E. Dislocation Dynamics in Crystals: A Macroscopic Theory in a Fractional Laplace Setting. Commun. Math. Phys. 333, 1061–1105 (2015). https://doi.org/10.1007/s00220-014-2118-6

Download citation

Keywords

  • Transition Layer
  • External Stress
  • Comparison Principle
  • Obstacle Problem
  • Layer Solution