Advertisement

Communications in Mathematical Physics

, Volume 331, Issue 3, pp 1155–1190 | Cite as

Dirac Reduction for Poisson Vertex Algebras

  • Alberto De SoleEmail author
  • Victor G. Kac
  • Daniele Valeri
Article

Abstract

We construct an analogue of Dirac’s reduction for an arbitrary local or non-local Poisson bracket in the general setup of non-local Poisson vertex algebras. This leads to Dirac’s reduction of an arbitrary non-local Poisson structure. We apply this construction to an example of a generalized Drinfeld–Sokolov hierarchy.

Keywords

Pseudodifferential Operator Poisson Structure Hamiltonian Equation Vertex Algebra Differential Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BDSK09.
    Barakat A., De Sole A., Kac V.G.: Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math. 4(2), 141–252 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  2. BD04.
    Beilinson, A., Drinfeld, V.: Chiral algebras. In: American Mathematical Society Colloquium Publications, vol. 51. American Mathematical Society, Providence (2004)Google Scholar
  3. CDSK12.
    Carpentier, S., De Sole, A., Kac, V.G.: Some algebraic properties of differential operators. J. Math. Phys. 53(6), 063501, 12 (2012)Google Scholar
  4. CDSK13a.
    Carpentier, S., De Sole, A., Kac, V.G.: Some remarks on non-commutative principal ideal rings. C. R. Math. Acad. Sci. Paris 351(1–2), 5–8 (2013)Google Scholar
  5. CDSK13b.
    Carpentier, S., De Sole, A., Kac, V.G.: Rational matrix pseudodifferential operators. Selecta Math. (N.S.) 20(2), 403–419 (2014)Google Scholar
  6. CDSK13c.
    Carpentier, S., De Sole, A., Kac, V.G.: Singular Degree of a Rational Matrix Pseudodifferential Operator. arXiv:1308.2647 [math-ph] (preprint)
  7. DSK06.
    De Sole A., Kac V.G.: Finite vs. affine W-algebras. Jpn. J. Math. 1(1), 137–261 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  8. DSK13.
    De Sole A., Kac V.G.: Non-local Poisson structures and applications to the theory of integrable systems. Jpn. J. Math. 8(2), 233–347 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  9. DSKV12.
    De Sole, A., Kac, V.G., Valeri, D.: Classical \({\mathcal{W}}\) -algebras and generalized Drinfeld–Sokolov bi-Hamiltonian systems within the theory of Poisson vertex algebras. Commun. Math. Phys. 323(2), 663–711 (2013)Google Scholar
  10. DSKV13.
    De Sole, A., Kac, V.G., Valeri, D.: Classical \({\mathcal{W}}\) -algebras and generalized Drinfeld–Sokolov hierarchies for minimal and short nilpotents. Commun. Math. Phys. arXiv:1306.1684 [math-ph] (to appear)
  11. Dir50.
    Dirac P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950)zbMATHMathSciNetCrossRefGoogle Scholar
  12. DS85.
    Drinfeld V.G., Sokolov V.V.: Lie algebras and equations of KdV type. Sov. J. Math. 30, 1975–2036 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alberto De Sole
    • 1
    Email author
  • Victor G. Kac
    • 2
  • Daniele Valeri
    • 3
  1. 1.Dipartimento di MatematicaSapienza Università di RomaRomeItaly
  2. 2.Department of MathematicsMITCambridgeUSA
  3. 3.SISSATriesteItaly

Personalised recommendations