Advertisement

Communications in Mathematical Physics

, Volume 332, Issue 3, pp 1235–1255 | Cite as

Upper Bound on the Decay of Correlations in a General Class of O(N)-Symmetric Models

  • Maxime Gagnebin
  • Yvan VelenikEmail author
Article

Abstract

We consider a general class of two-dimensional spin systems, with continuous but not necessarily smooth, possibly long-range, O(N)-symmetric interactions, for which we establish algebraically decaying upper bounds on spin-spin correlations under all infinite-volume Gibbs measures.

As a by-product, we also obtain estimates on the effective resistance of a (possibly long-range) resistor network in which randomly selected edges are shorted.

Keywords

Random Walk Trigonometric Polynomial Gibbs Measure Effective Resistance Resistor Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biskup, M.: Reflection positivity and phase transitions in lattice spin models. In: Methods of Contemporary Mathematical Statistical Physics, volume 1970 of Lecture Notes in Math., pp. 1–86. Springer, Berlin (2009)Google Scholar
  2. 2.
    Bonato C.A., Fernando Perez J., Klein Abel: The Mermin–Wagner phenomenon and cluster properties of one- and two-dimensional systems. J. Stat. Phys. 29(2), 159–175 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    Bruno P.: Absence of spontaneous magnetic order at nonzero temperature in one- and two-dimensional heisenberg and XY systems with long-range interactions. Phys. Rev. Lett. 87, 137203 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Dobrushin R.L., Shlosman S.B.: Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics. Commun. Math. Phys. 42, 31–40 (1975)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks, volume 22 of Carus Mathematical Monographs. Mathematical Association of America, Washington, DC (1984)Google Scholar
  6. 6.
    Fisher M.E., Jasnow D.: Decay of order in isotropic systems of restricted dimensionality. II. Spin systems. Phys. Rev. B (3) 3, 907–924 (1971)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Fröhlich J., Pfister C.: On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Commun. Math. Phys. 81(2), 277–298 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    Fröhlich J., Spencer T.: The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Commun. Math. Phys. 81(4), 527–602 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    Georgii, H.-O.: Gibbs Measures and Phase Transitions, Volume 9 of de Gruyter Studies in Mathematics, 2 edn. Walter de Gruyter & Co., Berlin (2011)Google Scholar
  10. 10.
    Grafakos, L.: Classical Fourier analysis, volume 249 of Graduate Texts in Mathematics, 2nd edition. Springer, New York (2008)Google Scholar
  11. 11.
    Ioffe D., Shlosman S., Velenik Y.: 2D models of statistical physics with continuous symmetry: The case of singular interactions. Commun. Math. Phys. 226(2), 433–454 (2002)MathSciNetzbMATHADSCrossRefGoogle Scholar
  12. 12.
    Ito K.R.: Clustering in low-dimensional SO(N)-invariant statistical models with long-range interactions. J. Stat. Phys. 29(4), 747–760 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    Jackson, D.: The Theory of Approximation, volume 11 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1994). Reprint of the 1930 originalGoogle Scholar
  14. 14.
    Klein A., Landau L.J., Shucker D.S.: On the absence of spontaneous breakdown of continuous symmetry for equilibrium states in two dimensions. J. Stat. Phys. 26(3), 505–512 (1981)MathSciNetzbMATHADSCrossRefGoogle Scholar
  15. 15.
    Kunz H., Pfister C.-E.: First order phase transition in the plane rotator ferromagnetic model in two dimensions. Commun. Math. Phys. 46(3), 245–251 (1976)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Lawler, G.F., Limic, V.: Random Walk: A modern Introduction, Volume 123 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)Google Scholar
  17. 17.
    Liggett T.M., Schonmann R.H., Stacey A.M.: Domination by product measures. Ann. Probab. 25(1), 71–95 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    McBryan O.A., Spencer T.: On the decay of correlations in SO(n)-symmetric ferromagnets. Commun. Math. Phys. 53(3), 299–302 (1977)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    McDiarmid, C.: Concentration. In: Probabilistic methods for algorithmic discrete mathematics, volume 16 of Algorithms Combin. pp. 195–248. Springer, Berlin (1998)Google Scholar
  20. 20.
    Mermin N.D., Wagner H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)ADSCrossRefGoogle Scholar
  21. 21.
    Messager A., Miracle-Solé S., Ruiz J.: Upper bounds on the decay of correlations in SO(N)-symmetric spin systems with long range interactions. Ann. Inst. H. Poincaré Sect. A (N.S.) 40(1), 85–96 (1984)Google Scholar
  22. 22.
    Naddaf A.: On the decay of correlations in non-analytic SO(n)-symmetric models. Commun. Math. Phys. 184(2), 387–395 (1997)MathSciNetzbMATHADSCrossRefGoogle Scholar
  23. 23.
    Pfister C.E.: On the symmetry of the Gibbs states in two-dimensional lattice systems. Commun. Math. Phys. 79(2), 181–188 (1981)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Picco P.: Upper bound on the decay of correlations in the plane rotator model with long-range random interaction. J. Stat. Phys. 36(3-4), 489–516 (1984)MathSciNetzbMATHADSCrossRefGoogle Scholar
  25. 25.
    Simon, B.: Fifteen problems in mathematical physics. In: Perspectives in Mathematics, pp. 423–454. Birkhäuser, Basel (1984)Google Scholar
  26. 26.
    Šlosman S.B.: Decrease of correlations in two-dimensional models with continuous group symmetry. Teoret. Mat. Fiz. 37(3), 427–430 (1978)MathSciNetGoogle Scholar
  27. 27.
    van Enter A.C.D.: Bounds on correlation decay for long-range vector spin glasses. J. Stat. Phys. 41(1-2), 315–321 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Section de mathématiquesUniversité de GenèveGenevaSwitzerland

Personalised recommendations