Advertisement

Communications in Mathematical Physics

, Volume 331, Issue 3, pp 1237–1270 | Cite as

T-Systems, Networks and Dimers

  • Philippe Di FrancescoEmail author
Article

Abstract

We study the solutions of the T-system for type A, also known as the octahedron equation, viewed as a 2 + 1-dimensional discrete evolution equation. These may be expressed entirely in terms of the stepped surface over which the initial data are specified, via a suitably defined flat GL n connection which embodies the integrability of this infinite rank system. By interpreting the connection as the transfer operator for a directed graph or network with weighted edges, we show that the solution at a given point is expressed as the partition function for dimers on a bipartite graph dual to the “shadow” of the point onto the initial data stepped surface. We extend the result to the case of other geometries, such as that of the evaporation of a cube corner crystal, and to a reformulation of the Kenyon–Pemantle discrete hexahedron equation.

Keywords

Partition Function Cluster Algebra Black Vertex Brane Tiling Cube Corner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assem, I., Reutenauer, C., Smith, D.: Frises. arXiv:0906.2026 [math.RA]
  2. 2.
    Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195, 405–455 (2005). arXiv:math/0404446 [math.QA]
  3. 3.
    Bergeron, F., Reutenauer, C.: SL k-tiling of the plane. Ill. J. Math. 54, 263–300 (2010). arXiv:1002.1089 [math.CO]
  4. 4.
    Carroll, G., Speyer, D.: The cube recurrence. Electron. J. Comb. 11, R73 (2004). arXiv:math/0403417 [math.CO]
  5. 5.
    Coxeter H.S.M.: Frieze patterns, triangulated polygons and dichromatic symmetry. In: Guy, R.K., Woodrow, E. (eds) The Lighter Side of Mathematics, pp. 15–27. Wiley, NY (1961)Google Scholar
  6. 6.
    Di Francesco, P.: New integrable lattice models from Fuss–Catalan algebras. Nucl. Phys. B532 [FS], 609–634 (1998). arXiv:hep-th/9807074
  7. 7.
    Di Francesco, P.: The solution of the A r T-system for arbitrary boundary. Electron. J. Comb. 17(1), R89 (2010). arXiv:1002.4427 [math.CO]
  8. 8.
    Di Francesco, P.: An inhomogeneous lambda-determinant. Electron. J. Comb. 20(3), P19 (2013). arXiv:1209.6619 [math.CO]
  9. 9.
    Di Francesco, P., Kedem, R.: Q-systems as cluster algebras II. Lett. Math. Phys. 89(3), 183–216 (2009). arXiv:0803.0362 [math.RT]
  10. 10.
    Di Francesco, P., Kedem, R.: The solution of the quantum A 1 T-system for arbitrary boundary. Commun. Math. Phys. 313(2), 329–350 (2012). doi: 10.1007/s00220-012-1488-x, preprint arXiv:1102.5552 [math-ph]
  11. 11.
    Di Francesco, P., Kedem, R.: T-system with boundaries from network solutions. Electron. J. Comb. 20(1), P3 (2013). arXiv:1208.4333 [math.CO]
  12. 12.
    Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating sign matrices and domino tilings. J. Algebr. Comb. 1, 111–132, 219–234 (1992). arXiv:math/9201305 [math.CO]
  13. 13.
    Fomin, S., Zelevinsky, A.: Cluster algebras I. J. Am. Math. Soc. 15(2), 497–529 (2002). arXiv:math/0104151 [math.RT]
  14. 14.
    Goncharov, A.B., Kenyon, R.: Dimers and cluster integrable systems. Ann. Sci. Ecole Norm. S. 46(5), 747–813 (2013). arXiv:1107.5588 [math.AG]
  15. 15.
    Jeong, I.-J., Musiker, G., Zhang, S.: Gale-Robinson sequences and brane tilings. In: Proceedings of FPSAC 2013 Paris, France, DMTCS Proc. AS, pp. 73–748 (2013)Google Scholar
  16. 16.
    Kashaev R.: On discrete three-dimensional equations associated with the local Yang–Baxter relation. Lett. Math. Phys. 33, 389–397 (1996)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kenyon, R., Okounkov, A.: Limit shapes and the complex Burgers equation. Acta Math. 199(2), 263–302 (2007). arXiv:math-ph/0507007
  18. 18.
    Kenyon R., Okounkov A.: Planar dimers and Harnack curves. Duke Math. J. 131(3), 499–524 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163(3), 1019–1056 (2006). arXiv:math-ph/0311005
  20. 20.
    Kenyon, R., Pemantle, R.: Double-dimers, the Ising model and the hexahedron recurrence. In: Proceedings of FPSAC 2013 Paris, France, DMTCS Proc. AS, pp. 141–152 (2013)Google Scholar
  21. 21.
    Knutson, A., Tao, T., Woodward, C.: A positive proof of the Littlewood–Richardson rule using the octahedron recurrence. Electron. J. Combin. 11, RP 61 (2004). arXiv:math/0306274 [math.CO]
  22. 22.
    Kuniba, A., Nakanishi, A., Suzuki, J.: Functional relations in solvable lattice models. I. Functional relations and representation theory. Int. J. Mod. Phys. A 9(30), 5215–5266 (1994). arXiv:hep-th/9310060
  23. 23.
    Lee, K., Schiffler, R.: Positivity for cluster algebras. arXiv:1306.2415 [math.CO]
  24. 24.
    Martins M.J., Nienhuis B.: Exact and numerical results for a dimerized coupled spin-1/2 chain. Phys. Rev. Lett. 85, 4956–4959 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Robbins D., Rumsey H.: Determinants and alternating sign matrices. Adv. Math. 62, 169–184 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Speyer, D.: Perfect matchings and the octahedron recurrence. J. Algebr. Comb. 25(3), 309–348 (2007). arXiv:math/0402452 [math.CO]

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Illinois MC-382UrbanaUSA

Personalised recommendations