Advertisement

Communications in Mathematical Physics

, Volume 331, Issue 3, pp 1071–1086 | Cite as

Phase Transition Free Regions in the Ising Model via the Kac–Ward Operator

  • Marcin LisEmail author
Article

Abstract

We provide an upper bound on the spectral radius of the Kac–Ward transition matrix for a general planar graph. Combined with the Kac–Ward formula for the partition function of the planar Ising model, this allows us to identify regions in the complex plane where the free energy density limits are analytic functions of the inverse temperature. The bound turns out to be optimal in the case of isoradial graphs, i.e., it yields criticality of the self-dual Z-invariant coupling constants.

Keywords

Partition Function Transition Matrix Ising Model Spectral Radius Free Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizenman M., Barsky D.J., Fernández R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47(3–4), 343–374 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    Baxter R.J.: Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. Roy. Soc. Lond. Ser. A 404(1826), 1–33 (1986)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Baxter R.J.: Exactly solved models in statistical mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1982)zbMATHGoogle Scholar
  4. 4.
    Boutillier C., de Tilière B.: The critical Z-invariant Ising model via dimers: the periodic case. Probab. Theory Relat. Fields 147(3–4), 379–413 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Boutillier C., de Tilière B.: The critical Z-invariant Ising model via dimers: locality property. Comm. Math. Phys. 301(2), 473–516 (2011)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Burgoyne P.N.: Remarks on the combinatorial approach to the Ising problem. J. Math. Phys. 4, 1320–1326 (1963)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Cimasoni, D.: A generalized Kac–Ward formula. J. Stat. Mech. Theory E. (2010JUL), P07023Google Scholar
  9. 9.
    Cimasoni D., Duminil-Copin H.: The critical temperature for the Ising model on planar doubly periodic graphs. Electron. J. Probab. 18(44), 1–18 (2013)MathSciNetGoogle Scholar
  10. 10.
    Dolbilin N.P., Zinov′ev Yu.M., Mishchenko A.S., Shtan′ko M.A., Shtogrin M.I.: The two-dimensional Ising model and the Kac–Ward determinant. Izv. Ross. Akad. Nauk Ser. Mat. 63(4), 79–100 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Duffin R.J.: Potential theory on a rhombic lattice. J. Comb. Theory 5, 258–272 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Fisher M.E.: Critical temperatures of anisotropic Ising lattices. II. General upper bounds. Phys. Rev. 162(2), 480–485 (1967)ADSCrossRefGoogle Scholar
  13. 13.
    Ising E.: Beitrag zur Theorie des Ferromagnetismus. Z. Physik 31, 253–258 (1925)ADSCrossRefGoogle Scholar
  14. 14.
    Kac M., Ward J.C.: A combinatorial solution of the two-dimensional Ising model. Phys. Rev. 88(6), 1332–1337 (1952)ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Kager W., Lis M., Meester R.: The signed loop approach to the Ising model: foundations and critical point. J. Stat. Phys. 152(2), 353–387 (2013)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Kramers H.A., Wannier G.H.: Statistics of the two-dimensional ferromagnet. I. Phys. Rev. (2) 60, 252–262 (1941)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Lenz W.: Beitrag zum Verständnis der magnetischen Eigenschaften in festen Körpern. Phys. Zeitschr. 21, 613–615 (1920)Google Scholar
  18. 18.
    Lis, M.: The Fermionic Observable in the Ising Model and the Inverse Kac–Ward Operator, Annales Henri Poincaré. Available at doi: 10.1007/s00023-013-0295-z (2013)
  19. 19.
    Mercat C.: Discrete Riemann surfaces and the Ising model. Comm. Math. Phys. 218(1), 177–216 (2001)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Onsager L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. (2) 65, 117–149 (1944)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Peierls R.: On Ising’s model of ferromagnetism. Proc. Cambridge Phil. Soc. 32, 477–481 (1936)ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Schiff J.L.: Normal families. Springer, New York (1993)zbMATHCrossRefGoogle Scholar
  23. 23.
    Sherman S.: Combinatorial aspects of the Ising model for ferromagnetism. I. A conjecture of Feynman on paths and graphs. J. Math. Phys. 1, 202–217 (1960)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Smirnov S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. (2) 172(2), 1435–1467 (1960)Google Scholar
  25. 25.
    Vdovichenko N.V.: A calculation of the partition function for a plane dipole lattice. Soviet Phys. JETP 20, 477–488 (1965)MathSciNetGoogle Scholar
  26. 26.
    Vdovichenko N.V.: Spontaneous magnetization of a plane dipole lattice. Soviet Phys. JETP 21, 350–352 (1965)ADSMathSciNetGoogle Scholar
  27. 27.
    Yang C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. (2) 85, 808–816 (1952)ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsVU UniversityAmsterdamThe Netherlands

Personalised recommendations