Communications in Mathematical Physics

, Volume 331, Issue 2, pp 431–475 | Cite as

A Generalization of Schur–Weyl Duality with Applications in Quantum Estimation

Article

Abstract

Schur–Weyl duality is a powerful tool in representation theory which has many applications to quantum information theory. We provide a generalization of this duality and demonstrate some of its applications. In particular, we use it to develop a general framework for the study of a family of quantum estimation problems wherein one is given n copies of an unknown quantum state according to some prior and the goal is to estimate certain parameters of the given state. In particular, we are interested to know whether collective measurements are useful and if so to find an upper bound on the amount of entanglement which is required to achieve the optimal estimation. In the case of pure states, we show that commutativity of the set of observables that define the estimation problem implies the sufficiency of unentangled measurements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goodman R., Wallach N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  2. 2.
    Harrow A.: Applications of coherent classical communication and the Schur transform to quantum information theory, PhD thesis, MIT (2005). Arxiv preperint: quant-ph/0512255
  3. 3.
    Hayashi A., Horibe M., Hashimoto T.: Optimal estimation of a physical observable’s expectation value for pure states. Phys. Rev. A 73, 062322 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Holevo, A.: Probabilistic and Statistical Aspects of Quantum Theory, Scuola Normale Superiore (Monographs) (2011)Google Scholar
  5. 5.
    Chiribella, G.: Optimal estimation of quantum signals in the presence of symmetry. PhD thesis, University of Pavia, Pavia, Italy (2006).Google Scholar
  6. 6.
    Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 033001 (2013). quant-ph/1104.0018
  7. 7.
    Marvian, I., Spekkens, R.W.: Under preparationGoogle Scholar
  8. 8.
    Zanardi P., Rasetti M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    Zanardi P.: Stabilizing quantum information. Phys. Rev. A 63, 012301 (2000)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Knill E., Laflamme R., Viola L.: Theory of Quantum error correction for General Noise. Phys. Rev. Lett. 84, 2525 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Kempe J., Bacon D., Lidar D.A., Whaley K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Bartlett S.D., Rudolph T., Spekkens R.W.: Classical and quantum communication without a shared Reference frame. Phys. Rev. Lett. 91, 027901 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Zyczkowski, K., Sommers, H.J.: Induced measures in the space of mixed quantum states. J. Phys. A 34, 7111 (2001). quant-ph/0012101
  14. 14.
    Helstrom C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)Google Scholar
  15. 15.
    Keyl M., Werner R.F.: Estimating the spectrum of a density operator. Phys. Rev. A 64, 052311 (2001)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  3. 3.Department of Physics and Astronomy, Center for Quantum Information Science and TechnologyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations