Skip to main content

Advertisement

Log in

A Generalization of Schur–Weyl Duality with Applications in Quantum Estimation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Schur–Weyl duality is a powerful tool in representation theory which has many applications to quantum information theory. We provide a generalization of this duality and demonstrate some of its applications. In particular, we use it to develop a general framework for the study of a family of quantum estimation problems wherein one is given n copies of an unknown quantum state according to some prior and the goal is to estimate certain parameters of the given state. In particular, we are interested to know whether collective measurements are useful and if so to find an upper bound on the amount of entanglement which is required to achieve the optimal estimation. In the case of pure states, we show that commutativity of the set of observables that define the estimation problem implies the sufficiency of unentangled measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodman R., Wallach N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  2. Harrow A.: Applications of coherent classical communication and the Schur transform to quantum information theory, PhD thesis, MIT (2005). Arxiv preperint: quant-ph/0512255

  3. Hayashi A., Horibe M., Hashimoto T.: Optimal estimation of a physical observable’s expectation value for pure states. Phys. Rev. A 73, 062322 (2006)

    Article  ADS  Google Scholar 

  4. Holevo, A.: Probabilistic and Statistical Aspects of Quantum Theory, Scuola Normale Superiore (Monographs) (2011)

  5. Chiribella, G.: Optimal estimation of quantum signals in the presence of symmetry. PhD thesis, University of Pavia, Pavia, Italy (2006).

  6. Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 033001 (2013). quant-ph/1104.0018

  7. Marvian, I., Spekkens, R.W.: Under preparation

  8. Zanardi P., Rasetti M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  9. Zanardi P.: Stabilizing quantum information. Phys. Rev. A 63, 012301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. Knill E., Laflamme R., Viola L.: Theory of Quantum error correction for General Noise. Phys. Rev. Lett. 84, 2525 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Kempe J., Bacon D., Lidar D.A., Whaley K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2001)

    Article  ADS  Google Scholar 

  12. Bartlett S.D., Rudolph T., Spekkens R.W.: Classical and quantum communication without a shared Reference frame. Phys. Rev. Lett. 91, 027901 (2003)

    Article  ADS  Google Scholar 

  13. Zyczkowski, K., Sommers, H.J.: Induced measures in the space of mixed quantum states. J. Phys. A 34, 7111 (2001). quant-ph/0012101

  14. Helstrom C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    Google Scholar 

  15. Keyl M., Werner R.F.: Estimating the spectrum of a density operator. Phys. Rev. A 64, 052311 (2001)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Marvian.

Additional information

Communicated by A. Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marvian, I., Spekkens, R.W. A Generalization of Schur–Weyl Duality with Applications in Quantum Estimation. Commun. Math. Phys. 331, 431–475 (2014). https://doi.org/10.1007/s00220-014-2059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2059-0

Keywords

Navigation