Skip to main content
Log in

Orbifolds and Topological Defects

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study orbifolds of two-dimensional topological field theories using defects. If the TFT arises as the twist of a superconformal field theory, we recover results on the Neveu–Schwarz and Ramond sectors of the orbifold theory, as well as bulk-boundary correlators from a novel, universal perspective. This entails a structure somewhat weaker than ordinary TFT, which however still describes a sector of the underlying conformal theory. The case of B-twisted Landau–Ginzburg models is discussed in detail, where we compute charge vectors and superpotential terms for B-type branes.

Our construction also works in the absence of supersymmetry and for generalised “orbifolds” that need not arise from symmetry groups. In general, this involves a natural appearance of Hochschild (co)homology in a 2-categorical setting, in which among other things we provide simple presentations of Serre functors and a further generalisation of the Cardy condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abouzaid, M.: A geometric criterion for generating the Fukaya category. Publications mathématiques de l’IHÉS 112, 191–240 (2010). [arXiv:1001.4593]

  2. Ashok, S.K., Dell’Aquila, E., Diaconescu, D.-E.: Fractional branes in Landau–Ginzburg orbifolds. Adv. Theor. Math. Phys. 8, 461–513 (2004). [hep-th/0401135]

  3. Baez, J., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995). [math.QA/9503002]

  4. Ballard, M., Favero, D., Katzarkov, L.: A category of kernels for equivariant factorisations and its implications for Hodge theory. to appear in Pub. Math. de ÍHÉS [arXiv:1105.3177]

  5. Baumgartl, M., Brunner, I., Plencner, D.: D-brane moduli spaces and superpotentials in a two-parameter model. JHEP 1203, 039 (2012). [arXiv:1201.4103]

  6. Borceux, F.: Handbook of categorical algebra 1, volume 50 of Encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge (1994)

  7. Brunner, I., Gaberdiel, M.R.: Matrix factorisations and permutation branes. JHEP 0507, 012 (2005). [hep-th/0503207]

  8. Brunner, I., Herbst, M., Lerche, W., Scheuner, B.: Landau–Ginzburg realization of open string TFT. JHEP 0611, 043 (2003). [hep-th/0305133]

  9. Brunner, I., Roggenkamp, D.: B-type defects in Landau–Ginzburg models. JHEP 0708, 093 (2007). [arXiv:0707.0922]

  10. Brunner, I., Roggenkamp, D.: Defects and bulk perturbations of boundary Landau–Ginzburg orbifolds. JHEP 0804, 001 (2008). [arXiv:0712.0188]

  11. Căldăraru, A., Willerton, S.: The Mukai pairing, I: a categorical approach. N. Y. J. Math. 16, 61–98 (2010). [arXiv:0707.2052]

  12. Carqueville, N., Murfet, D.: Computing Khovanov–Rozansky homology and defect fusion. Algebr. Geom. Topol. 14, 489–537 (2014). [arXiv:1108.1081]

  13. Carqueville, N., Murfet, D.: Adjunctions and defects in Landau–Ginzburg models. [arXiv:1208.1481]

  14. Carqueville, N., Murfet, D.: A toolkit for defect computations in Landau–Ginzburg models, [arXiv:1303.1389]

  15. Carqueville, N., Runkel, I.: On the monoidal structure of matrix bi-factorisations. J. Phys. A Math. Theor. 43, 275401 (2010). [arXiv:0909.4381]

  16. Carqueville, N., Runkel, I.: Rigidity and defect actions in Landau–Ginzburg models. Commun. Math. Phys. 310, 135–179 (2012). [arXiv:1006.5609]

  17. Carqueville, N., Runkel, I.: Orbifold completion of defect bicategories. [arXiv:1210.6363]

  18. Caviezel, C., Fredenhagen, S., Gaberdiel, M.R.: The RR charges of A-type Gepner models. JHEP 0601, 111 (2006). [hep-th/0511078]

  19. Dyckerhoff, T., Murfet, D.: Pushing forward matrix factorisations. Duke. Math. J. 162(7), 1205–1391 (2013). [arXiv:1102.2957]

  20. Enger, H., Recknagel, A., Roggenkamp, D.: Permutation branes and linear matrix factorisations. JHEP 0601, 087 (2006). [hep-th/0508053]

  21. Fröhlich, J., Fuchs, J., Runkel, I., Schweigert, C.: Defect lines, dualities, and generalised orbifolds. In: Proceedings of the XVI International Congress on Mathematical Physics, Prague (2009). [arXiv:0909.5013]

  22. Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators. I: Partition functions. Nucl. Phys. B 646, 353–497 (2002). [hep-th/0204148]

  23. Fuchs, J., Stigner, C.: On Frobenius algebras in rigid monoidal categories. Arab. J. Sci. Eng. 33(2C), 175–191 (2008). [arXiv:0901.4886]

  24. Ganatra, S.: Symplectic cohomology and duality for the wrapped Fukaya category. [arXiv:1304.7312]

  25. Gepner, D., Qiu, Z.: Modular invariant partition functions for parafermionic field theories. Nucl. Phys. B 285, 423–453(1987)

    Article  ADS  MathSciNet  Google Scholar 

  26. Herbst, M., Lazaroiu, C.I.: Localization and traces in open-closed topological Landau–Ginzburg models. JHEP 0505, 044 (2005). [hep-th/0404184]

  27. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror symmetry, Clay mathematics monographs, vol. 1. American Mathematical Society, USA (2003)

  28. Intriligator, K.A., Vafa, C.: Landau–Ginzburg orbifolds. Nucl. Phys. B 339, 95–120(1990)

    Article  ADS  MathSciNet  Google Scholar 

  29. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88, 55–112(1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Joyal, A., Street, R.: The geometry of tensor calculus II. draft available at http://maths.mq.edu.au/~street/GTCII

  31. Kachru, S., Katz, S., Lawrence, A., McGreevy, J.: Mirror symmetry for open strings. Phys. Rev. D 62, 126005 (2000). [hep-th/0006047]

  32. Kapustin, A., Li, Y.: D-branes in Landau-Ginzburg models and algebraic geometry. JHEP 0312, 005 (2003). [hep-th/0210296]

  33. Kapustin, A., Li, Y.: Topological correlators in Landau–Ginzburg Models with boundaries. Adv. Theor. Math. Phys. 7, 727–749 (2004). [hep-th/0305136]

  34. Kapustin, A., Rozansky, L.: On the relation between open and closed topological strings. Commun. Math. Phys. 252, 393–414 (2004). [hep-th/0405232]

  35. Lauda, A.D.: An introduction to diagrammatic algebra and categorified quantum \({\mathfrak{sl}_2}\) . Bull. Inst. Math. Acad. Sin. (New Series), vol. 7(2), 165–270 (2012). [arXiv:1106.2128]

  36. Lazaroiu, C.I.: On the structure of open-closed topological field theory in two dimensions. Nucl. Phys. B 603, 497–530 (2001). [hep-th/0010269]

  37. Lazaroiu, C.I.: On the boundary coupling of topological Landau–Ginzburg models. JHEP 0505, 037 (2005). [hep-th/0312286]

  38. Lerche,W.,Vafa, C.,Warner, N.: Chiral rings in N = 2 superconformal theories.Nucl. Phys.B324, 427(1989)

    Article  ADS  MathSciNet  Google Scholar 

  39. Lurie, J.: On the classification of topological field theories. Curr. Dev. Math. 2008, 1–454 (2009). [arXiv:0905.0465]

  40. Moore G.W., Segal, G.: D-branes and K-theory in 2D topological field theory. [hep-th/0609042]

  41. Murfet, D.: Residues and duality for singularity categories of isolated Gorenstein singularities. Compos. Math. 149(12), 2071–2100 (2013). [arXiv:0912.1629]

  42. Polishchuk, A., Vaintrob, A.: Chern characters and Hirzebruch–Riemann–Roch formula for matrix factorisations. Duke Math. J. 161, 1863–1926 (2012). [arXiv:1002.2116]

  43. Reiten, I., Van den Bergh, M.: Noetherian hereditary categories satisfying Serre duality. J. Am. Math. Soc. 15, 295–366 (2002). [math.RT/9911242]

  44. Shklyarov, D.: On Serre duality for compact homologically smooth DG algebras. [math.RA/0702590]

  45. Shklyarov, D.: Hirzebruch–Riemann–Roch theorem for DG algebras. [arXiv:0710.1937]

  46. Skowroński, A., Yamagata, K.: Frobenius algebras I: basic representation theory, EMS textbooks in mathematics. European Mathematical Society Publishing House, Zurich (2012)

  47. Vafa, C.: String vacua and orbifoldized lg models. Mod. Phys. Lett. A 4, 1169(1989)

    Article  ADS  MathSciNet  Google Scholar 

  48. Walcher, J.: Stability of Landau–Ginzburg branes. J. Math. Phys. 46, 082305 (2005). [hep-th/0412274]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Plencner.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunner, I., Carqueville, N. & Plencner, D. Orbifolds and Topological Defects. Commun. Math. Phys. 332, 669–712 (2014). https://doi.org/10.1007/s00220-014-2056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2056-3

Keywords

Navigation