Communications in Mathematical Physics

, Volume 331, Issue 2, pp 677–701 | Cite as

CCAP for Universal Discrete Quantum Groups

  • Kenny De Commer
  • Amaury Freslon
  • Makoto Yamashita
Article

Abstract

We show that the discrete duals of the free orthogonal quantum groups have the Haagerup property and the completely contractive approximation property. Analogous results hold for the free unitary quantum groups and the quantum automorphism groups of finite-dimensional C*-algebras. The proof relies on the monoidal equivalence between free orthogonal quantum groups and SUq(2) quantum groups, on the construction of a sufficient supply of bounded central functionals for SUq(2) quantum groups, and on the free product techniques of Ricard and Xu. Our results generalize previous work in the Kac setting due to Brannan on the Haagerup property, and due to the second author on the CCAP.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banica T.: Théorie des représentations du groupe quantique compact libre O(n). C. R. Acad. Sci. Paris Sér. I Math. 322(3), 241–244 (1996)MATHMathSciNetGoogle Scholar
  2. 2.
    Banica T.: Le groupe quantique compact libre U(n). Commun. Math. Phys. 190(1), 143–172 (1997). doi:10.1007/s002200050237 ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Banica T.: Quantum groups and Fuss–Catalan algebras. Commun. Math. Phys. 226(1), 221–232 (2002). doi:10.1007/s002200200613 ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bédos E., Murphy G.J., Tuset L.: Amenability and co-amenability of algebraic quantum groups. II. J. Funct. Anal. 201(2), 303–340 (2003). doi:10.1016/S0022-1236(03)00021-1 CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bichon J., De Rijdt A., Vaes S.: Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Commun. Math. Phys. 262(3), 703–728 (2006). doi:10.1007/s00220-005-1442-2 ADSCrossRefMATHGoogle Scholar
  6. 6.
    Blanchard E.F., Dykema K.J.: Embeddings of reduced free products of operator algebras. Pac. J. Math. 199(1), 1–19 (2001). doi:10.2140/pjm.2001.199.1 CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Boutonnet R., Houdayer C., Raum S.: Amalgamated free product type III factors with at most one Cartan subalgebra. Compos. Math. 150, 143–174 (2014). doi:10.1112/s0010437x13007537 CrossRefMathSciNetGoogle Scholar
  8. 8.
    Brannan M.: Approximation properties for free orthogonal and free unitary quantum groups. J. Reine Angew. Math. 672, 223–251 (2012)MATHMathSciNetGoogle Scholar
  9. 9.
    Brannan M.: Reduced operator algebras of trace-preserving quantum automorphism groups. Documenta Math. 18, 1349–1402 (2013)MATHMathSciNetGoogle Scholar
  10. 10.
    Brown, N.P., Ozawa. N.: C *-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence (2008) ISBN 978-0-8218-4381-9; 0-8218-4381-8Google Scholar
  11. 11.
    Cipriani F., Franz U., Kula A.: Symmetries of Lévy processes, their Markov semigroups and potential theory on compact quantum groups. J. Funct. Anal. 266(5), 2789–2844 (2014). doi:10.1016/j.jfa.2013.11.026 CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Connes A.: Almost periodic states and factors of type III1. J. Funct. Anal. 16, 415–445 (1974)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Connes A.: Classification of injective factors. Cases II1, II, IIIλ, λ ≠ 1. Ann. Math. (2) 104(1), 73–115 (1976)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Cowling M., Haagerup U.: Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math. 96(3), 507–549 (1989). doi:10.1007/BF01393695 ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Daws M.: Multipliers of locally compact quantum groups via Hilbert C*-modules. J. Lond. Math. Soc. (2) 84(2), 385–407 (2011). doi:10.1112/jlms/jdr013 CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    De Commer K.: A note on the von Neumann algebra underlying some universal compact quantum groups. Banach J. Math. Anal. 3(2), 103–108 (2009)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    De Rijdt A., Van der Vennet N.: Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries. Ann. Inst. Fourier (Grenoble) 60(1), 169–216 (2010)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Drabant B., Van Daele A.: Pairing and quantum double of multiplier Hopf algebras. Algebra Represent. Theory 4(2), 109–132 (2001). doi:10.1023/A:1011470032416 CrossRefMATHGoogle Scholar
  19. 19.
    Freslon, A.: Examples of weakly amenable discrete quantum groups. J. Funct. Anal. 265(9), 2164–2187 (2013). doi:10.1016/j.jfa.2013.05.037; arxiv:1207.1470v4 [math.OA]
  20. 20.
    Haagerup U.: An example of a nonnuclear C*-algebra, which has the metric approximation property. Invent. Math. 50(3), 279–293 (1978/79). doi:10.1007/BF01410082 ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hajac P.M., Matthes R., Szymański W.: Quantum real projective space, disc and spheres. Algebra Represent. Theory 6(2), 169–192 (2003). doi:10.1023/A:1023288309786 CrossRefMATHGoogle Scholar
  22. 22.
    Houdayer C., Ricard É.: Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors. Adv. Math. 228(2), 764–802 (2011). doi:10.1016/j.aim.2011.06.010 CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Isono, Y.: Examples of factors which have no Cartan subalgebras. preprint (2012). Available at arxiv:1209.1728 [math.OA], to appear in Trans. Am. Math. Soc.
  24. 24.
    Isono, Y.: On bi-exactness of discrete quantum groups. preprint (2013). Available at arxiv:1308.5103 [math.OA]
  25. 25.
    Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Delft University of Technology, Report no. 98-17 (1998)Google Scholar
  26. 26.
    Kraus J., Ruan Z.-J.: Approximation properties for Kac algebras. Indiana Univ. Math. J. 48(2), 469–535 (1999). doi:10.1512/iumj.1999.48.1660 CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Kustermans, J.: Universal C*-algebraic quantum groups arising from algebraic quantum groups. preprint (1997). Available at arxiv:funct-an/9704006 [math.FA]
  28. 28.
    Majid, S.: Foundations of quantum group theory. Cambridge University Press, Cambridge (1995). ISBN 0-521-46032-8. doi:10.1017/CBO9780511613104
  29. 29.
    Ozawa N., Popa S.: On a class of II1 factors with at most one Cartan subalgebra. Ann. Math. (2) 172(1), 713–749 (2010). doi:10.4007/annals.2010.172.713 CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Podleś P., Woronowicz S.L.: Quantum deformation of Lorentz group. Commun. Math. Phys. 130(2), 381–431 (1990)ADSCrossRefMATHGoogle Scholar
  31. 31.
    Popa, S., Vaes, S.: Unique Cartan decomposition for II1 factors arising from arbitrary actions of hyperbolic groups, J. Reine Angew. Math. (2013). doi:10.1515/crelle-2012-0104; arxiv:1201.2824 [math.OA]. to appear in print
  32. 32.
    Pusz W.: Irreducible unitary representations of quantum Lorentz group. Commun. Math. Phys. 152(3), 591–626 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Pytlik T., Szwarc R.: An analytic family of uniformly bounded representations of free groups. Acta Math. 157(3–4), 287–309 (1986). doi:10.1007/BF02392596 CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Ricard É., Xu Q.: Khintchine type inequalities for reduced free products and applications. J. Reine Angew. Math. 599, 27–59 (2006). doi:10.1515/CRELLE.2006.077 MATHMathSciNetGoogle Scholar
  35. 35.
    Ruan Z.-J.: Amenability of Hopf von Neumann algebras and Kac algebras. J. Funct. Anal. 139(2), 466–499 (1996). doi:10.1006/jfan.1996.0093 CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Schürmann M., Skeide M.: Infinitesimal generators on the quantum group SUq(2). Infin. Dimens. Anal. Quantum Prob. Relat. Top. 1(4), 573–598 (1998). doi:10.1142/S0219025798000314 CrossRefMATHGoogle Scholar
  37. 37.
    Sołtan P.M.: Quantum SO(3) groups and quantum group actions on M 2. J. Noncommut. Geom. 4(1), 1–28 (2010). doi:10.4171/JNCG/48 ADSMATHMathSciNetGoogle Scholar
  38. 38.
    Vaes S., Vergnioux R.: The boundary of universal discrete quantum groups, exactness, and factoriality. Duke Math. J. 140(1), 35–84 (2007). doi:10.1215/S0012-7094-07-14012-2 CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Van Daele A.: An algebraic framework for group duality. Adv. Math. 140(2), 323–366 (1998). doi:10.1006/aima.1998.1775 CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Van Daele A., Wang S.: Universal quantum groups. Int. J. Math. 7(2), 255–263 (1996). doi:10.1142/S0129167X96000153 CrossRefMATHGoogle Scholar
  41. 41.
    Vergnioux R.: Orientation of quantum Cayley trees and applications. J. Reine Angew. Math. 580, 101–138 (2005). doi:10.1515/crll.2005.2005.580.101 CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Voigt C.: The Baum–Connes conjecture for free orthogonal quantum groups. Adv. Math. 227(5), 1873–1913 (2011). doi:10.1016/j.aim.2011.04.008 CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Wang S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)ADSCrossRefMATHGoogle Scholar
  44. 44.
    Wang S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195(1), 195–211 (1998). doi:10.1007/s002200050385 ADSCrossRefMATHGoogle Scholar
  45. 45.
    Wang, S.: Structure and isomorphism classification of compact quantum groups A u(Q) and B u(Q). J. Oper. Theory 48(3 Suppl.), 573–583 (2002)Google Scholar
  46. 46.
    Woronowicz S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23(1), 117–181 (1987). doi:10.2977/prims/1195176848 CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987). doi:10.1007/BF01219077 ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kenny De Commer
    • 1
  • Amaury Freslon
    • 2
  • Makoto Yamashita
    • 3
  1. 1.Département de mathématiques, UMR CNRS 8088Université de Cergy-PontoiseCergy-PontoiseFrance
  2. 2.Sorbonne Paris Cité, UMR 7586Université Paris DiderotParisFrance
  3. 3.Institut for Matematiske FagKøbenhavns UniversitetCopenhagenDenmark

Personalised recommendations