Adler S.L., et al.: Martingale models for quantum state reduction. J. Phys. A 34, 8795 (2001)
ADS
Article
MATH
MathSciNet
Google Scholar
Amini, H., Mirrahimi, M., Rouchon, P.: On stability of continuous-time quantum filters. In: 50th IEEE Conference on Decision and European Control Conference, pp. 6242–6247 (2011). arXiv:1103.2706
Amini, H., Pierre, R., Pellegrini, C.: On stability of generalized continuous quantum time filter: perfect and imperfect measurements. preprint. arXiv:1312.0418
Amini H., Mirrahimi M., Rouchon P.: Stabilization of a delayed quantum system: the photon box case-study. IEEE Trans. Automat. Control 57(8), 1918–1930 (2012)
Article
MathSciNet
Google Scholar
Amini, H., Somaraju, A., Dotsenko, I., Sayrin, C., Mirrahimi, M., Rouchon, P.: Feedback stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays. Automatica 49(9), 2683–2692 (2013). arXiv:1201.1387
Google Scholar
Attal S., Pautrat Y.: From (n + 1)-level atom chains to n-dimensional noises. Ann. Inst. H. Poincaré Probab. Statist. 41(3), 391–407 (2005)
ADS
Article
MATH
MathSciNet
Google Scholar
Attal S., Pautrat Y.: From repeated to continuous quantum interactions. Ann. Henri Poincaré 7(1), 59–104 (2006)
ADS
Article
MATH
MathSciNet
Google Scholar
Barchielli A.: Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics. Quantum Opt. 2, 423–441 (1990)
ADS
Article
MathSciNet
Google Scholar
Barchielli, A., Gregoratti, M.: Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case. Lecture Notes in Physics, vol. 782. Springer, Berlin (2009)
Barchielli A., Belavkin V.P.: Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A 24(7), 1495–1514 (1991)
ADS
Article
MathSciNet
Google Scholar
Barchielli, A., Paganoni, A.M.: Stochastic differential equations for trace-class operators and quantum continual measurements. In Stochastic partial differential equations and applications (Trento, 2002), of Lecture Notes in Pure and Appl. Math. vol. 227, pp. 53–67. Dekker, New York (2002)
Barchielli A., Zucca F.: On a class of stochastic differential equations used in quantum optics. Rend. Sem. Mat. Fis. Milano 66, 355–376 (1998)
Article
MATH
MathSciNet
Google Scholar
Barchielli A., Holevo A.S.: Constructing quantum measurement processes via classical stochastic calculus. Stoch. Process. Appl. 58, 293–317 (1995)
Article
MATH
MathSciNet
Google Scholar
Bauer M., Bernard D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84, 044103 (2011)
ADS
Article
Google Scholar
Bauer M., Benoist T., Bernard D.: Repeated quantum non-demolition measurements: convergence and continuous time limit. Ann. Henri Poincaré 14(4), 639–679 (2013)
ADS
Article
MATH
MathSciNet
Google Scholar
Bauer M., Bernard D., Benoist T.: Iterated stochastic measurements. J. Phys. A. Math. Theor. 45, 494020 (2012)
Article
MathSciNet
Google Scholar
Bouten L., van Handel R., James M.R.: A discrete invitation to quantum filtering and feedback control. SIAM Rev. 51(2), 239–316 (2009)
ADS
Article
MATH
MathSciNet
Google Scholar
Bouten L., van Handel R., James M.R.: An introduction to quantum filtering. SIAM J. Control Optim. 46(6), 2199–2241 (2007)
Article
MATH
MathSciNet
Google Scholar
Belavkin V.P., Melsheimer O.: Quantum diffusion, measurement and filtering. Probab. Theory Appl. 38, 742 (1993)
Google Scholar
Belavkin V.P.: A continuous counting observation and posterior quantum dynamics. J. Phys. A. Math. Gen. 22, 1109–1114 (1989)
ADS
Article
MathSciNet
Google Scholar
Belavkin V.P.: Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42, 171–201 (1992)
ADS
Article
MATH
MathSciNet
Google Scholar
Belavkin V.P.: Quantum continual measurements and a posteriori collapse on CCR. Commun. Math. Phys. 146, 635–635 (1992)
ADS
Article
MATH
MathSciNet
Google Scholar
Braginsky V.B., Vorontsov Y.I., Thorne K.S.: Quantum nondemolition measurements. Science 209(4456), 547–557 (1980)
ADS
Article
Google Scholar
Breuer H.P., Petruccione F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)
MATH
Google Scholar
Carmichael H.J.: An Open Systems Approach to Quantum Optics. Springer, Berlin (1993)
MATH
Google Scholar
Carmichael H.J.: Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations. Springer, Berlin (1999)
Book
MATH
Google Scholar
Carmichael H.J.: Statistical Methods in Quantum Optics 2: Non-classical Fields. Springer, Berlin (2008)
Book
Google Scholar
Diosi L. Quantum stochastic processes as models for quantum state reduction. J. Phys. A 21, 2885 (1988)
Google Scholar
Clerk A.A., Devoret M.H., Girvin S.M., Marquardt Florian, Schoelkopf R.J.: Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010)
ADS
Article
MATH
MathSciNet
Google Scholar
Davies E.B.: Quantum theory of open systems. Academic Press, London (1976)
MATH
Google Scholar
Gardiner C.-W., Zoller P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, Berlin (2004)
Google Scholar
Gisin N., Percival I.C.: The quantum-state diffusion model applied to open systems. J. Phys. A. Math. Gen. 25, 5677–5691 (1992)
ADS
Article
MATH
MathSciNet
Google Scholar
Gisin N.: Quantum measurements and stochastic processes. Phys. Rev. Lett. 52, 1657–1660 (1984)
ADS
Article
MathSciNet
Google Scholar
Gorini V., Kossakowski A., Sudarshan E.C.G.: Completely positive semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)
ADS
Article
MathSciNet
Google Scholar
Guerlin C., Bernu J., Deléglise S., Sayrin C., Gleyzes S., Kuhr S., Brune M., Raimond J.-M., Haroche S.: Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889 (2007)
ADS
Article
Google Scholar
Haroche S., Raimond J.-M.: Exploring the quantum. Atoms, cavities and photons. Oxford University Press, Oxford (2006)
Book
MATH
Google Scholar
Gleyzes S., Kuhr S., Guerlin C., Bernu J., Deléglise S., Hoff U.B., Brune M., Raimond J.-M., Haroche S.: Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007)
ADS
Article
Google Scholar
Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)
ADS
Article
MATH
MathSciNet
Google Scholar
Milburn G.J.: Quantum measurement theory of optical heterodyne detection. Phys. Rev. A 36, 5271–5279 (1987)
ADS
Article
MathSciNet
Google Scholar
Mirrahimi M., van Handel R.: Stabilizing feedback controls for quantum systems. SIAM J. Control Optim. 46, 445–467 (2007)
Article
MATH
MathSciNet
Google Scholar
Pellegrini C.: Existence, uniqueness and approximation of a stochastic Schrödinger equation: the diffusive case. Ann. Prob. 36, 2332–2353 (2008)
Article
MATH
MathSciNet
Google Scholar
Pellegrini C.: Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems. Stoch. Process. Appl. 120, 1722–1747 (2010)
Article
MATH
MathSciNet
Google Scholar
Pellegrini C.: Markov Chains approximations of jump-diffusion stochastic master equations. Ann. Inst. H. Poincaré Probab. Statist. 46, 924–948 (2010)
ADS
Article
MATH
MathSciNet
Google Scholar
Rouchon P.: Fidelity is a sub-martingale for discrete-time quantum filters. IEEE Trans. Automat. Control 56, 2743–2747 (2011)
Article
MathSciNet
Google Scholar
Sayrin C., Dotsenko I., Zhou X., Peaudecerf B., Rybarczyk T., Gleyzes S., Rouchon P., Mirrahimi M., Amini H., Brune M., Raimond J.-M., Haroche S.: Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011)
ADS
Article
Google Scholar
van Handel R.: The stability of quantum Markov filters. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 153–172 (2009)
Article
MATH
MathSciNet
Google Scholar
van Handel R., Stockton J., Mabuchi H.: Feedback control of quantum state reduction. IEEE Trans. Autom. Control 50, 768 (2005)
Article
Google Scholar
van Handel R., Stockton J., Mabuchi H.: Deterministic Dick-state preparation with continuous measurement and control. Phys. Rev. A70, 022106 (2004)
ADS
Google Scholar
Wiseman H.M., Milburn G.-J.: Quantum measurement and control. Cambridge University Press, Cambridge (2010)
MATH
Google Scholar
Wiseman, H.M.: Quantum trajectories and feedback. Diss. University of Queensland (1994)
Ziman M., Štelmachovič P., Bužek V.: Description of quantum dynamics of open systems based on collision-like models. Open Systems Inf Dyn 12, 81–91 (2005)
Article
MATH
Google Scholar