Skip to main content

Large Time Behavior and Convergence Rate for Quantum Filters Under Standard Non Demolition Conditions

Abstract

A quantum system \({\mathcal S}\) undergoing continuous time measurement is usually described by a jump-diffusion stochastic differential equation. Such an equation is called a quantum filtering equation (or quantum stochastic master equation) and its solution is called a quantum filter (or quantum trajectory). This solution describes the evolution of the state of \({\mathcal S}\). In the context of quantum non demolition measurement, we investigate the large time behavior of this solution. It is rigorously shown that, for large time, this solution behaves as if a direct Von Neumann measurement has been performed at time 0. In particular the solution converges to a random pure state which can be directly linked to the wave packet reduction postulate. Using the theory of Girsanov transformation, we obtain the explicit rate of convergence towards this random state. The problem of state estimation (used in experiment) is also investigated.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Adler S.L., et al.: Martingale models for quantum state reduction. J. Phys. A 34, 8795 (2001)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  2. 2

    Amini, H., Mirrahimi, M., Rouchon, P.: On stability of continuous-time quantum filters. In: 50th IEEE Conference on Decision and European Control Conference, pp. 6242–6247 (2011). arXiv:1103.2706

  3. 3

    Amini, H., Pierre, R., Pellegrini, C.: On stability of generalized continuous quantum time filter: perfect and imperfect measurements. preprint. arXiv:1312.0418

  4. 4

    Amini H., Mirrahimi M., Rouchon P.: Stabilization of a delayed quantum system: the photon box case-study. IEEE Trans. Automat. Control 57(8), 1918–1930 (2012)

    Article  MathSciNet  Google Scholar 

  5. 5

    Amini, H., Somaraju, A., Dotsenko, I., Sayrin, C., Mirrahimi, M., Rouchon, P.: Feedback stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays. Automatica 49(9), 2683–2692 (2013). arXiv:1201.1387

    Google Scholar 

  6. 6

    Attal S., Pautrat Y.: From (n + 1)-level atom chains to n-dimensional noises. Ann. Inst. H. Poincaré Probab. Statist. 41(3), 391–407 (2005)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  7. 7

    Attal S., Pautrat Y.: From repeated to continuous quantum interactions. Ann. Henri Poincaré 7(1), 59–104 (2006)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  8. 8

    Barchielli A.: Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics. Quantum Opt. 2, 423–441 (1990)

    ADS  Article  MathSciNet  Google Scholar 

  9. 9

    Barchielli, A., Gregoratti, M.: Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case. Lecture Notes in Physics, vol. 782. Springer, Berlin (2009)

  10. 10

    Barchielli A., Belavkin V.P.: Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A 24(7), 1495–1514 (1991)

    ADS  Article  MathSciNet  Google Scholar 

  11. 11

    Barchielli, A., Paganoni, A.M.: Stochastic differential equations for trace-class operators and quantum continual measurements. In Stochastic partial differential equations and applications (Trento, 2002), of Lecture Notes in Pure and Appl. Math. vol. 227, pp. 53–67. Dekker, New York (2002)

  12. 12

    Barchielli A., Zucca F.: On a class of stochastic differential equations used in quantum optics. Rend. Sem. Mat. Fis. Milano 66, 355–376 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. 13

    Barchielli A., Holevo A.S.: Constructing quantum measurement processes via classical stochastic calculus. Stoch. Process. Appl. 58, 293–317 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14

    Bauer M., Bernard D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84, 044103 (2011)

    ADS  Article  Google Scholar 

  15. 15

    Bauer M., Benoist T., Bernard D.: Repeated quantum non-demolition measurements: convergence and continuous time limit. Ann. Henri Poincaré 14(4), 639–679 (2013)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  16. 16

    Bauer M., Bernard D., Benoist T.: Iterated stochastic measurements. J. Phys. A. Math. Theor. 45, 494020 (2012)

    Article  MathSciNet  Google Scholar 

  17. 17

    Bouten L., van Handel R., James M.R.: A discrete invitation to quantum filtering and feedback control. SIAM Rev. 51(2), 239–316 (2009)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  18. 18

    Bouten L., van Handel R., James M.R.: An introduction to quantum filtering. SIAM J. Control Optim. 46(6), 2199–2241 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. 19

    Belavkin V.P., Melsheimer O.: Quantum diffusion, measurement and filtering. Probab. Theory Appl. 38, 742 (1993)

    Google Scholar 

  20. 20

    Belavkin V.P.: A continuous counting observation and posterior quantum dynamics. J. Phys. A. Math. Gen. 22, 1109–1114 (1989)

    ADS  Article  MathSciNet  Google Scholar 

  21. 21

    Belavkin V.P.: Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42, 171–201 (1992)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  22. 22

    Belavkin V.P.: Quantum continual measurements and a posteriori collapse on CCR. Commun. Math. Phys. 146, 635–635 (1992)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  23. 23

    Braginsky V.B., Vorontsov Y.I., Thorne K.S.: Quantum nondemolition measurements. Science 209(4456), 547–557 (1980)

    ADS  Article  Google Scholar 

  24. 24

    Breuer H.P., Petruccione F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  25. 25

    Carmichael H.J.: An Open Systems Approach to Quantum Optics. Springer, Berlin (1993)

    MATH  Google Scholar 

  26. 26

    Carmichael H.J.: Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  27. 27

    Carmichael H.J.: Statistical Methods in Quantum Optics 2: Non-classical Fields. Springer, Berlin (2008)

    Book  Google Scholar 

  28. 28

    Diosi L. Quantum stochastic processes as models for quantum state reduction. J. Phys. A 21, 2885 (1988)

    Google Scholar 

  29. 29

    Clerk A.A., Devoret M.H., Girvin S.M., Marquardt Florian, Schoelkopf R.J.: Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  30. 30

    Davies E.B.: Quantum theory of open systems. Academic Press, London (1976)

    MATH  Google Scholar 

  31. 31

    Gardiner C.-W., Zoller P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, Berlin (2004)

    Google Scholar 

  32. 32

    Gisin N., Percival I.C.: The quantum-state diffusion model applied to open systems. J. Phys. A. Math. Gen. 25, 5677–5691 (1992)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  33. 33

    Gisin N.: Quantum measurements and stochastic processes. Phys. Rev. Lett. 52, 1657–1660 (1984)

    ADS  Article  MathSciNet  Google Scholar 

  34. 34

    Gorini V., Kossakowski A., Sudarshan E.C.G.: Completely positive semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    ADS  Article  MathSciNet  Google Scholar 

  35. 35

    Guerlin C., Bernu J., Deléglise S., Sayrin C., Gleyzes S., Kuhr S., Brune M., Raimond J.-M., Haroche S.: Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889 (2007)

    ADS  Article  Google Scholar 

  36. 36

    Haroche S., Raimond J.-M.: Exploring the quantum. Atoms, cavities and photons. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  37. 37

    Gleyzes S., Kuhr S., Guerlin C., Bernu J., Deléglise S., Hoff U.B., Brune M., Raimond J.-M., Haroche S.: Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007)

    ADS  Article  Google Scholar 

  38. 38

    Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  39. 39

    Milburn G.J.: Quantum measurement theory of optical heterodyne detection. Phys. Rev. A 36, 5271–5279 (1987)

    ADS  Article  MathSciNet  Google Scholar 

  40. 40

    Mirrahimi M., van Handel R.: Stabilizing feedback controls for quantum systems. SIAM J. Control Optim. 46, 445–467 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. 41

    Pellegrini C.: Existence, uniqueness and approximation of a stochastic Schrödinger equation: the diffusive case. Ann. Prob. 36, 2332–2353 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. 42

    Pellegrini C.: Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems. Stoch. Process. Appl. 120, 1722–1747 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. 43

    Pellegrini C.: Markov Chains approximations of jump-diffusion stochastic master equations. Ann. Inst. H. Poincaré Probab. Statist. 46, 924–948 (2010)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  44. 44

    Rouchon P.: Fidelity is a sub-martingale for discrete-time quantum filters. IEEE Trans. Automat. Control 56, 2743–2747 (2011)

    Article  MathSciNet  Google Scholar 

  45. 45

    Sayrin C., Dotsenko I., Zhou X., Peaudecerf B., Rybarczyk T., Gleyzes S., Rouchon P., Mirrahimi M., Amini H., Brune M., Raimond J.-M., Haroche S.: Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011)

    ADS  Article  Google Scholar 

  46. 46

    van Handel R.: The stability of quantum Markov filters. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 153–172 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  47. 47

    van Handel R., Stockton J., Mabuchi H.: Feedback control of quantum state reduction. IEEE Trans. Autom. Control 50, 768 (2005)

    Article  Google Scholar 

  48. 48

    van Handel R., Stockton J., Mabuchi H.: Deterministic Dick-state preparation with continuous measurement and control. Phys. Rev. A70, 022106 (2004)

    ADS  Google Scholar 

  49. 49

    Wiseman H.M., Milburn G.-J.: Quantum measurement and control. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  50. 50

    Wiseman, H.M.: Quantum trajectories and feedback. Diss. University of Queensland (1994)

  51. 51

    Ziman M., Štelmachovič P., Bužek V.: Description of quantum dynamics of open systems based on collision-like models. Open Systems Inf Dyn 12, 81–91 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clément Pellegrini.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benoist, T., Pellegrini, C. Large Time Behavior and Convergence Rate for Quantum Filters Under Standard Non Demolition Conditions. Commun. Math. Phys. 331, 703–723 (2014). https://doi.org/10.1007/s00220-014-2029-6

Download citation

Keywords

  • Large Time Behavior
  • Quantum Trajectory
  • True Quantum
  • Martingale Property
  • Wave Function Collapse