Skip to main content
Log in

Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Gaussian Multiplicative Chaos is a way to produce a measure on \({\mathbb{R}^d}\) (or subdomain of \({\mathbb{R}^d}\)) of the form \({e^{\gamma X(x)} dx}\), where X is a log-correlated Gaussian field and \({\gamma \in [0, \sqrt{2d})}\) is a fixed constant. A renormalization procedure is needed to make this precise, since X oscillates between −∞ and ∞ and is not a function in the usual sense. This procedure yields the zero measure when \({\gamma = \sqrt{2d}}\).

Two methods have been proposed to produce a non-trivial measure when \({\gamma = \sqrt{2d}}\). The first involves taking a derivative at \({\gamma = \sqrt{2d}}\) (and was studied in an earlier paper by the current authors), while the second involves a modified renormalization scheme. We show here that the two constructions are equivalent and use this fact to deduce several quantitative properties of the random measure. In particular, we complete the study of the moments of the derivative multiplicative chaos, which allows us to establish the KPZ formula at criticality. The case of two-dimensional (massless or massive) Gaussian free fields is also covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aïdékon E., Shi Z.: The Seneta–Heyde scaling for the branching random walk. Ann. Probab. 41(3A), 1362–1426 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allez, R., Rhodes, R., Vargas, V.: Lognormal \({\star}\)-scale invariant random measures. Probab. Theory Relat. Fields 155(3–4), 751–788

  3. Alvarez-Gaumé L., Barbón J.L.F., Crnković Č.: A proposal for strings at D > 1. Nucl. Phys. B 394, 383 (1993)

    Article  ADS  Google Scholar 

  4. Ambjørn J., Durhuus B., Jonsson T.: A solvable 2d gravity model with γ > 0. Modern Phys. Lett. A 9, 1221 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bacry E., Muzy J.F.: Log-infinitely divisible multifractal processes. Commun. Math. Phys. 236(3), 449–475 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Barral J., Jin X., Rhodes R., Vargas V.: Gaussian multiplicative chaos and KPZ duality. Commun. Math. Phys. 323, 451–485 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Barral J., Mandelbrot B.B.: Multifractal products of cylindrical pulses. Probab. Theory Relat. Fields 124, 409–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barral, J., Kupiainen, A., Nikula, M., Saksman, E., Webb, C.: Critical Mandelbrot’s cascades. Commun. Math. Phys. 325(2), 685–711 (2014). arXiv:1206.5444v1

    Google Scholar 

  9. Benjamini I., Schramm O.: KPZ in one dimensional random geometry of multiplicative cascades. Commun. Math. Phys. 289(2), 653–662 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Biskup, M., Louidor, O.: Extreme local extrema of the two-dimensional discrete Gaussian free field. arXiv:1306.2602

  11. Bramson, M., Ding, J., Zeitouni, O.: Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. arXiv:1301.6669

  12. Brézin E., Kazakov V.A., Zamolodchikov Al.B.: Scaling violation in a field theory of closed strings in one physical dimension. Nucl. Phys. B 338, 673–688 (1990)

    Article  ADS  Google Scholar 

  13. Chelkak D., Smirnov S.: Discrete complex analysis on isoradial graphs. Adv. Math. 228, 1590–1630 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Das S.R., Dhar A., Sengupta A.M., Wadia S.R.: New critical behavior in d = 0 large-N matrix models. Modern Phys. Lett. A 5, 1041 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. David, F.: Conformal field theories coupled to 2-D gravity in the conformal gauge. Modern Phys. Lett. A 3 (1988)

  16. Di Francesco P., Ginsparg P., Zinn-Justin J.: 2D gravity and random matrices. Phys. Rep. 254, 1–133 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  17. Distler, J., Kawai H.: Conformal field theory and 2-D quantum gravity or who’s afraid of Joseph Liouville? Nucl. Phys. B 321, 509–517 (1989)

    Google Scholar 

  18. Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Critical Gaussian multiplicative chaos: convergence of the derivative martingale. Ann. Probab. (2014, to appear). arXiv:1206.1671

  19. Duplantier B.: A rigorous perspective on Liouville quantum gravity and KPZ. In: Jacobsen, J., Ouvry, S., Pasquier, V., Serban, D., Cugliandolo, L.F. (eds) Exact Methods in Low-dimensional Statistical Physics and Quantum Computing. Lecture Notes of the Les Houches Summer School, vol. 89, July 2008, Oxford University Press, Clarendon (2010)

  20. Duplantier, B.: Conformal fractal geometry and boundary quantum gravity. In: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, pp. 365–482. American Mathematical Society, Providence (2004). arXiv:math-ph/0303034

  21. Duplantier B., Sheffield S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Duplantier B., Sheffield S.: Duality and KPZ in Liouville quantum gravity. Phys. Rev. Lett. 102, 150603 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Durhuus B.: Multi-spin systems on a randomly triangulated surface. Nucl. Phys. B 426, 203 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Falconer K.J.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  25. Fan A.H.: Sur le chaos de Lévy d’indice 0 < α < 1. Ann. Sci. Math. Québec 21(1), 53–66 (1997)

    MATH  Google Scholar 

  26. Garban, C., Rhodes, R., Vargas, V.: Liouville Brownian motion. arXiv:1301.2876v2 [math.PR]

  27. Ginsparg P., Moore G.: Lectures on 2D gravity and 2D string theory. In: Harvey, J., Polchinski, J. (eds) Recent Direction in Particle Theory, Proceedings of the 1992 TASI, World Scientific, Singapore (1993)

  28. Ginsparg P., Zinn-Justin J.: 2D gravity +  1D matter. Phys. Lett. B 240, 333–340 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  29. Gross D.J., Klebanov I.R.: One-dimensional string theory on a circle. Nucl. Phys. B 344, 475–498 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gross D.J., Miljković N.: A nonperturbative solution of D =  1 string theory. Phys. Lett. B 238, 217–223 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  31. Gubser S.S., Klebanov I.R.: A modified c =  1 matrix model with new critical behavior. Phys. Lett. B 340, 35–42 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  32. Heyde C.C.: Extension of a result of Seneta for the super-critical Galton–Watson process. Ann. Math. Stat. 41, 739–742 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hu Y., Shi Z.: Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2), 742–789 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jain S., Mathur S.D.: World-sheet geometry and baby universes in 2-D quantum gravity. Phys. Lett. B 286, 239 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  35. Kahane J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)

    MATH  MathSciNet  Google Scholar 

  36. Kazakov, V., Kostov, I., Kutasov, D.: A matrix model for the 2D black hole. In: Nonperturbative Quantum Effects 2000, JHEP Proceedings, Nuclear Physics, vol. B622, pp. 141–188 (2002)

  37. Klebanov I.R.: Touching random surfaces and Liouville gravity. Phys. Rev. D 51, 1836–1841 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  38. Klebanov I.R., Hashimoto A.: Non-perturbative solution of matrix models modified by trace-squared terms. Nucl. Phys. B 434, 264–282 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Klebanov I.R., Hashimoto A.: Wormholes, matrix models, and Liouville gravity. Nucl. Phys. (Proc. Suppl.) 45B,C, 135–148 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  40. Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B.: Fractal structure of 2D-quantum gravity. Modern Phys. Lett. A 3(8), 819–826 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  41. Kostov I.K.: Loop amplitudes for nonrational string theories. Phys. Lett. B 266, 317–324 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  42. Kostov I.K.: Strings with discrete target space. Nucl. Phys. B 376, 539–598 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  43. Kostov I.K.: Boundary Loop Models and 2D Quantum Gravity. In: Jacobsen, J., Ouvry, S., Pasquier, V., Serban, D., Cugliandolo, L.F. (eds) Exact Methods in Low-dimensional Statistical Physics and Quantum Computing, Lecture Notes of the Les Houches Summer School, vol. 89, July 2008, Oxford University Press, Clarendon (2010)

  44. Kostov I.K., Staudacher M.: Multicritical phases of the O(n) model on a random lattice. Nucl. Phys. B 384, 459–483 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  45. Lacoin, H., Rhodes, R., Vargas, V.: Complex Gaussian multiplicative chaos. arXiv:1307.6117

  46. Madaule, T.: Maximum of a log-correlated Gaussian field. arXiv:1307.1365v2 [math.PR]

  47. Molchan G.M.: Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179, 681–702 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Morters P., Peres Y.: Brownian Motion. Cambridge University press, Cambridge (2010)

    Book  Google Scholar 

  49. Nakayama Y.: Liouville field theory—a decade after the revolution. Int. J. Modern Phys. A 19, 2771 (2004)

    Article  ADS  MATH  Google Scholar 

  50. Parisi G.: On the one dimensional discretized string. Phys. Lett. B 238, 209–212 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  51. Polchinski J.: Critical behavior of random surfaces in one dimension. Nucl. Phys. B346, 253–263 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  52. Rhodes, R., Sohier, J., Vargas, V.: \({\star}\)-scale invariant random measures. Ann. Probab. (2014, to appear). arXiv:1201.5219v1

  53. Rhodes R., Vargas V.: Multidimensional multifractal random measures. Electron. J. Probab. 15, 241–258 (2010)

    MATH  MathSciNet  Google Scholar 

  54. Rhodes R., Vargas V.: KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15, 358–371 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  55. Robert R., Vargas V.: Gaussian multiplicative chaos revisited. Ann. Probab. 38(2), 605–631 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  56. Seneta E.: On recent theorems concerning the supercritical Galton–Watson process. Ann. Math. Stat. 39, 2098–2102 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  57. Sheffield S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139, 521–541 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  58. Sugino F., Tsuchiya O.: Critical behavior in c = 1 matrix model with branching interactions. Modern Phys. Lett. A 9, 3149–3162 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Rhodes.

Additional information

Communicated by F. Toninelli

R. Duplantier was partially supported by grant ANR-08-BLAN-0311-CSD5 and by the MISTI MIT-France Seed Fund.

R. Rhodes was partially supported by grant ANR-11-JCJC.

S. Sheffield was partially supported by NSF grants DMS 064558, OISE 0730136 and DMS 1209044, and by the MISTI MIT-France Seed Fund.

V. Vargas was partially supported by grant ANR-11-JCJC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duplantier, B., Rhodes, R., Sheffield, S. et al. Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation. Commun. Math. Phys. 330, 283–330 (2014). https://doi.org/10.1007/s00220-014-2000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2000-6

Keywords

Navigation