Communications in Mathematical Physics

, Volume 329, Issue 2, pp 809–820 | Cite as

Semiclassical Inverse Spectral Theory for Singularities of Focus–Focus Type

Article

Abstract

We prove, assuming that the Bohr–Sommerfeld rules hold, that the joint spectrum near a focus–focus singular value of a quantum integrable system determines the classical Lagrangian foliation around the full focus–focus leaf. The result applies, for instance, to ħ-pseudodifferential operators on cotangent bundles and Berezin–Toeplitz operators on prequantizable compact symplectic manifolds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bérard, P.: Quelques remarques sur les surfaces de révolution dans R 3. C. R. Acad. Sci. Paris Sér. A–B 282(3), Aii (A159–A161) (1976)Google Scholar
  2. 2.
    Brüning J., Heintze E.: Spektrale Starrheit gewisser Drehflächen. Math. Ann. 269(1), 95–101 (1984)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Charbonnel A.-M.: Comportement semi-classique du spectre conjoint d’opérateurs pseudo-différentiels qui commutent. Asymptot. Anal. 1, 227–261 (1988)MATHMathSciNetGoogle Scholar
  4. 4.
    Charles L.: Quasimodes and Bohr–Sommerfeld conditions for the Toeplitz operators. Commun. Part. Differ. Equ. 28(9–10), 1527–1566 (2003)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Charles, L., Pelayo, Á., Vũ Ngọc, S.: Isospectrality for quantum toric integrable systems (dedicated to Peter Sarnak on his 60th birthday). Ann. Sci. Éc. Norm. Sup. 43, 815–849 (2013)Google Scholar
  6. 6.
    Child M.S.: Quantum states in a Champagne bottle. J. Phys. A. 31, 657–670 (1998)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Colinde Verdière Y.: Spectre conjoint d’opérateurs pseudo-différentiels qui commutent I. Duke Math. J. 46(1), 169–182 (1979)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Colin de Verdière Y.: Spectre conjoint d’opérateurs pseudo-différentiels qui commutent II. Math. Z. 171, 51–73 (1980)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Colin de Verdière, Y., Guillemin, V.: A semi-classical inverse problem I: Taylor expansions. In: Geometric aspects of analysis and mechanics. Progress in Mathematics, vol. 292, pp. 81–95. Birkhäuser/Springer, New York (2011)Google Scholar
  10. 10.
    Cushman R., Duistermaat J.J.: The quantum spherical pendulum. Bull. Am. Math. Soc. (N.S.) 19, 475–479 (1988)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Datchev, K., Hezari, H.: Inverse problems in spectral geometry. In: Inverse Problems and Applications: Inside Out II, vol. 60, pp. 455–486. Mathematical Sciences Research Institute Publications, Berkeley (2012)Google Scholar
  12. 12.
    Duistermaat J.J.: On global action-angle variables. Commun. Pure Appl. Math. 33, 687–706 (1980)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Dullin H.R.: Semi-global symplectic invariants of the spherical pendulum. J. Differ. Equ. 254(7), 2942–2963 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Eliasson, L.: Hamiltonian systems with Poisson commuting integrals. PhD thesis, University of Stockholm, Stockholm (1984)Google Scholar
  15. 15.
    Guillemin, V., Sternberg, S.: Homogeneous quantization and multiplicities of group representations. J. Funct. Anal. 47(3), 344–380 (1982)Google Scholar
  16. 16.
    Guillemin V., Sternberg S.: Semi-Classical Analysis. International Press, Somerville (2013)MATHGoogle Scholar
  17. 17.
    Gurarie D.: Semiclassical eigenvalues and shape problems on surfaces of revolution. J. Math. Phys. 36(4), 1934–1944 (1995)ADSCrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Le Floch, Y.: PhD thesis, Université de Rennes 1, Rennes (2014) (in preparation)Google Scholar
  19. 19.
    Pelayo, Á., Polterovich, L., Vũ Ngọc, S.: Semiclassical quantization and spectral limits of ħ-pseudodifferential and Berezin–Toeplitz operators. Proc. Lond. Math. Soc. (2014). (arXiv:1302.0424, to appear)
  20. 20.
    Pelayo Á., Vũ Ngọc S.: Constructing integrable systems of semitoric type. Acta Math. 206(1), 93–125 (2011)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Pelayo Á., Vũ Ngọc S.: First steps in symplectic and spectral theory of integrable systems. Discret. Contin. Dyn. Syst. 32(10), 3325–3377 (2012)CrossRefMATHGoogle Scholar
  22. 22.
    Sadovskií D., Zhilinskií B.: Monodromy, diabolic points, and angular momentum coupling. Phys. Lett. A 256(4), 235–244 (1999)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    Symington, M.: Four dimensions from two in symplectic topology. In: Topology and geometry of manifolds (Athens, GA, 2001). Proceedings of Symposia in Pure Mathematics, vol. 71, pp. 153–208. American Mathematical Society, Providence, RI (2003)Google Scholar
  24. 24.
    Vũ Ngọc S.: Quantum monodromy in integrable systems. Commun. Math. Phys. 203(2), 465–479 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Vũ Ngọc S.: Bohr–Sommerfeld conditions for integrable systems with critical manifolds of focus–focus type. Commun. Pure Appl. Math. 53(2), 143–217 (2000)CrossRefGoogle Scholar
  26. 26.
    Vũ Ngọc S.: On semi-global invariants for focus–focus singularities. Topology 42(2), 365–380 (2003)ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    Vũ Ngọc, S.: Systèmes intégrables semi-classiques: du local au global. In: Panoramas et Synthèses, vol. 22. Société Mathématique de France, Paris (2006)Google Scholar
  28. 28.
    Vũ Ngọc, S.: Symplectic inverse spectral theory for pseudodifferential operators. In: Geometric aspects of analysis and mechanics. Progress in Mathematics, vol. 292, pp. 353–372. Birkhäuser/Springer, New York (2011)Google Scholar
  29. 29.
    Vũ Ngọc S., Wacheux C.: Smooth normal forms for hamiltonian systems near a focus–focus singularity. Acta Math. Vietnam. 38(1), 107–122 (2012)Google Scholar
  30. 30.
    Zelditch S.: The inverse spectral problem for surfaces of revolution. J. Differ.Geom. 49, 207–264 (1998)MATHMathSciNetGoogle Scholar
  31. 31.
    Zelditch, S.: The inverse spectral problem. In: Surveys in differential geometry, vol. IX, pp. 401–467. International Press, Somerville (2004) (with an appendix by Johannes Sjöstrand and Maciej Zworski)Google Scholar
  32. 32.
    Zung N.T.: Symplectic topology of integrable Hamiltonian systems, I: Arnold–Liouville with singularities. Compos. Math. 101, 179–215 (1996)MATHMathSciNetGoogle Scholar
  33. 33.
    Zung N.T.: A note on focus–focus singularities. Differ. Geom. Appl. 7(2), 123–130 (1997)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Zworski, M.: Semiclassical analysis. In: Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence, RI (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  2. 2.Mathematics DepartmentWashington University in St. LouisSt. LouisUSA
  3. 3.Institut Universitaire de FranceParisFrance
  4. 4.Institut de Recherches Mathématiques de RennesUniversité de Rennes 1Rennes CedexFrance

Personalised recommendations