Advertisement

Communications in Mathematical Physics

, Volume 330, Issue 2, pp 435–467 | Cite as

A Homomorphism Theorem and a Trotter Product Formula for Quantum Stochastic Flows with Unbounded Coefficients

  • Biswarup Das
  • Debashish GoswamiEmail author
  • Kalyan B. Sinha
Article

Abstract

We give a new method for proving the homomorphic property of a quantum stochastic flow satisfying a quantum stochastic differential equation with unbounded coefficients, under some further hypotheses. As an application, we prove a Trotter product formula for quantum stochastic flows and obtain quantum stochastic dilations of a class of quantum dynamical semigroups generalizing results of Goswami et al. (Inst H Poincare Probab Stat 41:505–522, 2005).

Keywords

Analytic Semigroup Strong Operator Topology Weak Operator Topology Projective Tensor Product Quantum Dynamical Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Accardi, L., Kozyrev, S.V.: On the structure of Markov flows. Irreversibility, probability and complexity (Les Treilles/Clausthal, 1999). Chaos Solitons Fractals 12(14–15), 2639–2655 (2001)Google Scholar
  2. 2.
    Das, B.: Dilation of arbitrary symmetric quantum dynamical semigroups on B(H). Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15(3), 1250017, 11 pp (2012)Google Scholar
  3. 3.
    Davies, E.B.: One-parameter semigroups. In: London Mathematical Society Monographs, vol. 15. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York (1980)Google Scholar
  4. 4.
    Evans M.P.: Existence of quantum diffusions. Probab. Theory Relat. Fields 81(4), 473–483 (1989)CrossRefzbMATHGoogle Scholar
  5. 5.
    Goswami D., Sahu L., Sinha K.B.: Dilation of a class of quantum dynamical semigroups with unbounded generators on UHF algebras. Inst. H. Poincare Probab. Stat. 41(3), 505–522 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Kato, T.: Perturbation theory for linear operators. Reprint of the 1980 edition. In: Classics in Mathematics. Springer, Berlin (1995)Google Scholar
  7. 7.
    Lindsay J.M., Sinha K.B.: A quantum stochastic Lie-Trotter product formula (to appear in the Platinum Jubilee volume). Indian J. Pure Appl. Math. 41(1), 313–325 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Lindsay J.M., Wills S.J.: Existence of Feller cocycles on a C* algebra. Bull. Lond. Math. Soc. 33(5), 613–621 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Matsui T.: Markov semigroups on UHF algebras. Rev. Math. Phys. 5(3), 587–600 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Meyer, P.A.: Quantum probability for probabilists. In: Lecture Notes in Mathematics. Springer, Berlin (1993)Google Scholar
  11. 11.
    Nelson E.: Analytic vectors. Ann. Math. (2) 70, 572–615 (1959)CrossRefzbMATHGoogle Scholar
  12. 12.
    Parthasarathy K.R.: An introduction to quantum stochastic calculus. In: Monographs in Mathematics, vol. 85. Birkhser, Basel (1992)Google Scholar
  13. 13.
    Parthasarathy, K.R., Sinha, K.B.: A random Trotter Kato product formula. Statistics and probability: essays in honor of C. R. Rao, pp. 553–565, North-Holland, Amsterdam-New York (1982)Google Scholar
  14. 14.
    Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. I and vol. II. Academic press, New York (1972)Google Scholar
  15. 15.
    Sinha, K.B., Goswami, D.: Quantum stochastic processes and noncommutative geometry. In: Cambridge Tracts in Mathematics, vol. 169. Cambridge University Press, Cambridge (2007)Google Scholar
  16. 16.
    Takesaki, M.: Theory of operator algebras. I. Reprint of the first (1979) edition. In: Encyclopaedia of Mathematical Sciences, vol. 124. Springer, Berlin (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Biswarup Das
    • 1
  • Debashish Goswami
    • 2
    Email author
  • Kalyan B. Sinha
    • 3
  1. 1.Institute of Mathematics of Polish Academy of SciencesWarszawaPoland
  2. 2.Indian Statistical InstituteKolkataIndia
  3. 3.J.N. Centre for Advanced Scientific ResearchIndian Institute of ScienceBangaloreIndia

Personalised recommendations