Controlling General Polynomial Networks


We consider networks of massive particles connected by non-linear springs. Some particles interact with heat baths at different temperatures, which are modeled as stochastic driving forces. The structure of the network is arbitrary, but the motion of each particle is 1D. For polynomial interactions, we give sufficient conditions for Hörmander’s “bracket condition” to hold, which implies the uniqueness of the steady state (if it exists), as well as the controllability of the associated system in control theory. These conditions are constructive; they are formulated in terms of inequivalence of the forces (modulo translations) and/or conditions on the topology of the connections. We illustrate our results with examples, including “conducting chains” of variable cross-section. This then extends the results for a simple chain obtained in Eckmann et al. in (Commun Math Phys 201:657–697, 1999).

This is a preview of subscription content, access via your institution.


  1. 1

    Eckmann J.-P., Hairer M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212, 105–164 (2000)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  2. 2

    Eckmann, J.-P., Hairer, M., Rey-Bellet L.: Non-equilibrium steady states for networks of springs. In preparation

  3. 3

    Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Entropy production in nonlinear, thermally driven Hamiltonian systems. J. Stat. Phys. 95, 305–331 (1999)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  4. 4

    Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201, 657–697 (1999)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  5. 5

    Eckmann J.-P., Zabey E.: Strange heat flux in (an)harmonic networks. J. Stat. Phys. 114, 515–523 (2004)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  6. 6

    Hairer, M.: A probabilistic argument for the controllability of conservative systems. arxiv:math-ph/0506064

  7. 7

    Hairer M.: How hot can a heat bath get?. Commun. Math. Phys. 292, 131–177 (2009)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  8. 8

    Hörmander, L.: The Analysis of Linear Partial Differential Operators I–IV. New York: Springer, 1985

  9. 9

    Jurdjevic, V.: Geometric control theory. Cambridge; New York: Cambridge University Press, 1997

  10. 10

    Rey-Bellet, L.: Ergodic properties of Markov processes. Open Quantum Syst. II 139 (2006)

  11. 11

    Rey-Bellet L., Thomas L.E.: Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators. Commun. Math. Phys. 215, 1–24 (2000)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  12. 12

    Villani C.: Hypocoercivity. Mem. Am. Math. Soc. 202, iv+141 (2009)

    MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. -P. Eckmann.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cuneo, N., Eckmann, J.P. Controlling General Polynomial Networks. Commun. Math. Phys. 328, 1255–1274 (2014).

Download citation


  • Equivalence Class
  • Heat Bath
  • Controllable Particle
  • Vandermonde Determinant
  • Commun Math Phys