Communications in Mathematical Physics

, Volume 329, Issue 1, pp 295–323 | Cite as

tt*-Geometry on the Big Phase Space

Article
  • 113 Downloads

Abstract

The big phase space, the geometric setting for the study of quantum cohomology with gravitational descendants, is a complex manifold and consists of an infinite number of copies of the small phase space. The aim of this paper is to define a Hermitian geometry on the big phase space.

Using the approach of Dijkgraaf and Witten (Nucl Phys B 342:486–522, 1990), we lift various geometric structures of the small phase space to the big phase space. The main results of our paper state that various notions from tt*-geometry are preserved under such liftings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cecotti S., Vafa C.: Topological–antitopological fusion. Nucl. Phys. B 367, 359–461 (1991)ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Dijkgraaf R., Witten E.: Mean field-theory, topological field-theory, and multimatrix models. Nucl. Phys. B 342(3), 486–522 (1990)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Donagi. R., Wendland, K.: From Hodge theory to integrability and TQFT: tt* geometry. Proceedings of Symposia in Pure Mathematics, vol. 78, American Mathematical Society (2008)Google Scholar
  4. 4.
    Dubrovin, B.: Geometry of 2D topological field theories. In: Francaviglia, M., Greco, S. (eds.) Integrable systems and quantum groups, Lecture Notes in Mathematics, vol. 1620, pp. 120–348. Springer, Berlin (1996)Google Scholar
  5. 5.
    Dubrovin B.: Integrable systems in topological field theory. Nucl. Phys. B 379, 627–689 (1992)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dubrovin B.: Geometry and integrability of topological-antitopological fusion. Commun. Math. Phys. 152(3), 539–564 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Getzler, E.: The jet-space of a Frobenius manifold and higher-genus Gromov-Witten invariants. In: Hertling, C., Marcolli, M. (eds.) Frobenius manifolds: quantum cohomology and singularities. Aspects Mathematics, Vol. 36, pp. 45–89. Vieweg, Wiesbaden (2004)Google Scholar
  8. 8.
    Givental A.B.: Gromov-Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1, 551–568 (2001)MATHMathSciNetGoogle Scholar
  9. 9.
    Guest, M.A., Lin, C-S,: Nonlinear PDE aspects of the tt *-equations of Cecotti and Vafa, arXiv:1010. 1889v1[math-ph]
  10. 10.
    Hertling C., Manin Y.I.: Weak frobenius manifolds. Internat. Math. Res. Notices 6, 277–286 (1999)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hertling C.: tt *-geometry, Frobenius manifolds, their connections, and the construction for singularities. J. Reine Angew. Math. 555, 77–161 (2003)MATHMathSciNetGoogle Scholar
  12. 12.
    Iritani, H.: tt *-geometry in quantum cohomology. arXiv:0906.1307v1[math D6]
  13. 13.
    Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Liu X., Tian G.: Virasoro constraints for quantum cohomology. J. Differ. Geom. 50, 537–591 (1998)MATHMathSciNetGoogle Scholar
  15. 15.
    Liu X.: Quantum product on the big phase space and the Virasoro conjecture. Adv. Math. 169, 313–375 (2002)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Liu X.: Gromow-Witten invariants and moduli spaces of curves. Proc. Int. Congr. Math. II, 791–812 (2006)Google Scholar
  17. 17.
    Liu X.: Idempotents on the big phase space. Contemp. Math. 403, 43–66 (2006)CrossRefGoogle Scholar
  18. 18.
    Sabbah, C.: Isomonodromic deformations and Frobenius manifolds—an introduction. Springer and EDP Sciences (2007)Google Scholar
  19. 19.
    Sabbah C.: Universal unfolding of Laurent polynomials and tt * structures, From Hodge theory to integrability and TQFT: tt *-geometry. Proc. Symp. Pure Math. 78, 1–29 (2008)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Saito, K.: The higher residue pairings \({K_{F}^{(k)} }\) for a family of hypersurfaces singular points. Singularities. In: Proceedings of Symposia in Pure Mathematics, vol. 40, pp. 441–463. American Mathematical Society, Providence, RI (1983)Google Scholar
  21. 21.
    Takahashi, A.: tt* geometry of rank two. Int. Math. Res. Notices, 2004 (22), 1099–1114 (2004)Google Scholar
  22. 22.
    Witten E.: On the structure of the topological phase of two dimensional gravity. Nucl. Phys. B 340, 281–332 (1990)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    Witten E.: Two-dimensional gravity and intersection theory on moduli space. Surv. Differ. Geom. 1, 243–310 (1991)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian Academy, Research Unit 4BucharestRomania
  2. 2.School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK

Personalised recommendations