Abstract
We establish an explicit formula for the limiting free energy density (log-partition function divided by the number of vertices) for ferromagnetic Potts models on uniformly sparse graph sequences converging locally to the d-regular tree for d even, covering all temperature regimes. This formula coincides with the Bethe free energy functional evaluated at a suitable fixed point of the belief propagation recursion on the d-regular tree, the so-called replica symmetric solution. For uniformly random d-regular graphs we further show that the replica symmetric Bethe formula is an upper bound for the asymptotic free energy for any model with permissive interactions.
Similar content being viewed by others
References
Aizenman M., Sims R., Starr S.L.: Extended variational principle for the Sherrington–Kirkpatrick spin-glass model. Phys. Rev. B 68, 214403 (2003)
Abou-Chacra R., Thouless D., Anderson P.: A selfconsistent theory of localization. J. Phys. C 6(10), 1734 (1973)
Aizenman, M., Warzel, S.: The canopy graph and level statistics for random operators on trees. Math. Phys. Anal. Geom. 9(4), 291–333 (2007), 2006
Borgs C., Chayes J., Kahn J., Lovász L.: Left and right convergence of graphs with bounded degree. Rand. Struct. Alg. 42(1), 1–28 (2013)
Bethe H.A.: Statistical theory of superlattices. Proc. R. Soc. Lond. A 150(871), 552–575 (1935)
Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. In: Proc. ACM Symp. (STOC). New York: ACM, 2010, pp. 105–114
Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 1–13 (electronic), (2001)
Chayes J.T., Chayes L., Sethna J.P., Thouless D.J.: A mean field spin glass with short-range interactions. Commun. Math. Phys. 106(1), 41–89 (1986)
Contucci P., Dommers S., Giardinà à C., Starr S.: Antiferromagnetic Potts model on the Erdős-Rényi random graph. Commun. Math. Phys. 323(2), 517–554 (2013)
Chalupa J., Leath P., Reich G.: Bootstrap percolation on a Bethe lattice. J. Phys. C 12(1), L31 (1979)
Dommers S., Giardinà à C., Hofstad R.: Ising models on power-law random graphs. J. Stat. Phys. 141(4), 638–660 (2010)
Dembo A., Kagan A., Shepp L.A.: Remarks on the maximum correlation coefficient. Bernoulli 7(2), 343–350 (2001)
Dembo A., Montanari A.: Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probab. Stat. 24(2), 137–211 (2010)
Dembo A., Montanari A.: Ising models on locally tree-like graphs. Ann. Appl. Probab. 20(2), 565–592 (2010)
Dembo A., Montanari A., Sun N.: Factor models on locally tree-like graphs. Ann. Probab. 41(6), 4162–4213 (2013)
Guerra F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233(1), 1–12 (2003)
Janson S., Łuczak T., Rucinski A.: Random graphs Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (2000)
Krza̧kała, F., Montanari, A., Ricci-Tersenghi, F. Semerjian, G., Zdeborová, L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. USA 104(25), 10318–10323 (electronic) (2007)
McDiarmid, C.: Concentration. In: Probabilistic methods for algorithmic discrete mathematics, Vol. 16 of Algorithms Combin. Berlin: Springer, 1998, pp. 195–248
Mézard M., Montanari A.: Information, physics, and computation. Oxford Graduate Texts. Oxford University Press, Oxford (2009)
Montanari A., Mossel E., Sly A.: The weak limit of Ising models on locally tree-like graphs. Probab. Theory Relat. Fields 152(1–2), 31–51 (2012)
Mézard M., Parisi G.: The Bethe lattice spin glass revisited. Eur. Phys. J. B Condens. Matter Phys. 20(2), 217–233 (2001)
Mézard, M., Parisi, G., Virasoro, M.A.: Spin glass theory and beyond. In: World scientific lecture notes in physics, Vol. 9. Teaneck: World Scientific Publishing Co. Inc., 1987
Mézard M., Parisi G., Zecchina R.: Analytic and algorithmic solution of random satisfiability problems. Science 297(5582), 812–815 (2002)
Robbins H.: A remark on Stirling’s formula. Am. Math. Monthly 62, 26–29 (1955)
Spitzer F.: Markov random fields on an infinite tree. Ann. Probab. 3(3), 387–398 (1975)
Sly, A., Sun, N.: Counting in two-spin models on d-regular graphs. Ann Probab. (2013) [to appear]
Talagrand, M.: Mean field models for spin glasses. In: Volume I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 54. 3. Folge. Berlin: Springer, Basic examples (2011)
Thouless D.: Spin-glass on a Bethe lattice. Phys. Rev. Lett. 56(10), 1082 (1986)
Weiss P.R.: The application of the Bethe–Peierls method to ferromagnetism. Phys. Rev. 74(10), 1493 (1948)
Zachary S.: Countable state space Markov random fields and Markov chains on trees. Ann. Probab. 11(4), 894–903 (1983)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H. Spohn
Research partially supported by NSF grants A. Dembo, A. Montanari, N. Sun: DMS-1106627 and A. Montanari: CCF-0743978, A. Sly: Alfred P. Sloan Research Fellowship, and N. Sun: Department of Defense NDSEG Fellowship.
Rights and permissions
About this article
Cite this article
Dembo, A., Montanari, A., Sly, A. et al. The Replica Symmetric Solution for Potts Models on d-Regular Graphs. Commun. Math. Phys. 327, 551–575 (2014). https://doi.org/10.1007/s00220-014-1956-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-014-1956-6