Skip to main content
Log in

Steady Subsonic Ideal Flows Through an Infinitely Long Nozzle with Large Vorticity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, the existence, uniqueness, and far field behavior of a class of subsonic flows with large vorticity for the steady Euler equations in infinitely long nozzles are established. More precisely, for any given convex horizontal velocity of incoming flow in the upstream, there exists a critical value m cr , if the mass flux is larger than m cr , then there exists a unique smooth subsonic Euler flow through the infinitely long nozzle. This well-posedness result is proved by a new observation for the method developed in Xie and Xin (SIAM J Math Anal 42:751–784, 2010) to deal with the Euler system. Furthermore, the optimal convergence rates of the subsonic flows at far fields are obtained via the maximum principle and an elaborate choice of the comparison functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bers, L.: Mathematical aspects of subsonic and transonic gas dynamics. In: Surveys in Applied Mathematics, Vol. 3, New York: Wiley and Sons, Inc., 1958

  2. Bers L.: Existence and uniqueness of a subsonic flow past a given profile. Comm. Pure Appl. Math. 7, 441–504 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen C., Xie C.J.: Existence of steady subsonic Euler flows through infinitely long periodic nozzles. J. Differ. Equ. 252, 4315–4331 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Chen G.Q., Dafermos C., Slemrod M., Wang D.H.: On two-dimensional sonic-subsonic flow. Comm. Math. Phys. 271, 635–647 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Chen G.Q., Deng X.M., Xiang W.: Global steady subsonic flows through infinitely long nozzles for the full Euler equations. SIAM J. Math. Anal. 44, 2888–2919 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen J.: Subsonic flows for the full Euler equations in half plane. J. Hyperbolic Differ. Equ. 6, 207–228 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dong G.C., Ou B.: Subsonic flows around a body in space. Comm. Partial Differ. Equ. 18(1-2), 355–379 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Du L.L., Duan B.: Global subsonic Euler flows in an infinitely long axisymmetric nozzle. J. Differ. Equ. 250, 813–847 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Du, L.L., Xie, C.J.: On subsonic Euler flows with stagnation points in two dimensional nozzles, preprint

  10. Du L.L., Xin Z.P., Yan W.: Subsonic flows in a multi-dimensional nozzle. Arch. Ration. Mech. Anal. 201, 965–1012 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Finn R., Gilbarg D.: Asymptotic behavior and uniqueness of plane subsonic flows. Comm. Pure Appl. Math. 10, 23–63 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  12. Finn R., Gilbarg D.: Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial differential equations. Acta Math. 98, 265–296 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gilbarg D.: Comparison methods in the theory of subsonic flows. J. Ration. Mech. Anal. 2, 233–251 (1953)

    MATH  MathSciNet  Google Scholar 

  14. Gilbarg D., Serrin J.: Uniqueness of axially symmetric subsonic flow past a finite body. J. Ration. Mech. Anal. 4, 169–175 (1955)

    MATH  MathSciNet  Google Scholar 

  15. Gilbarg D., Shiffman M.: On bodies achieving extreme values of the critical Mach number. I. J. Ratio. Mech. Anal. 3, 209–230 (1954)

    MATH  MathSciNet  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Berlin, Springer, 2001

  17. Huang F.M., Wang T.Y., Wang Y.: On multi-dimensional sonic-subsonic flow. Acta. Math. Sci. 31, 2131–2140 (2011)

    Article  MATH  Google Scholar 

  18. Wang C.P., Xin Z.P.: Optimal Holder continuity for a class of degenarate elliptic problems with an application to subsonic-sonic flows. Comm. Partial Differ. Eq. 36(5), 873–924 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang C.P., Xin Z.P.: On a degenerate free boundary problem and continuous subsonic-sonic flows in a convergent nozzle. Arch. Ration. Mech. Anal. 208, 911–975 (2012)

    Article  MathSciNet  Google Scholar 

  20. Xie C.J., Xin Z.P.: Global subsonic and subsonic-sonic flows through infinitely long nozzles. Indiana Univ. Math. J. 56(6), 2991–3023 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Xie C.J., Xin Z.P.: Global subsonic and subsonic-sonic flows through infinitely long axially symmetric nozzles. J. Differ. Equ. 248, 2657–2683 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  22. Xie C.J., Xin Z.P.: Existence of global steady subsonic Euler flows through infinitely long nozzle. SIAM J. Math. Anal. 42(2), 751–784 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjing Xie.

Additional information

Communicated by W. Schlag

Du is supported in part by NSFC grant 11171236, PCSIRT (IRT1273) and Fundamental Research Funds for the Central Universities. Xie is supported in part by NSFC grants 11241001, 11201297, Shanghai Chenguang Program, Shanghai Pujiang program 12PJ1405200, and a startup grant from Shanghai Jiao Tong University. Xin is supported in parts by Zheng Ge Ru Foundation, Hong Kong RGC Earmarked Research Grants CUHK 4042/08P and CUHK 4041/11P, and a grant from Croucher Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, L., Xie, C. & Xin, Z. Steady Subsonic Ideal Flows Through an Infinitely Long Nozzle with Large Vorticity. Commun. Math. Phys. 328, 327–354 (2014). https://doi.org/10.1007/s00220-014-1951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1951-y

Keywords

Navigation