Communications in Mathematical Physics

, Volume 327, Issue 1, pp 243–260 | Cite as

The Ponzano–Regge Model and Parametric Representation



We give a parametric representation of the effective noncommutative field theory derived from a \({\kappa}\) -deformation of the Ponzano–Regge model and define a generalized Kirchhoff polynomial with \({\kappa}\) -correction terms, obtained in a \({\kappa}\) -linear approximation. We then consider the corresponding graph hypersurfaces and the question of how the presence of the correction term affects their motivic nature. We look in particular at the tetrahedron graph, which is the basic case of relevance to quantum gravity. With the help of computer calculations, we verify that the number of points over finite fields of the corresponding hypersurface does not fit polynomials with integer coefficients, hence the hypersurface of the tetrahedron is not polynomially countable. This shows that the correction term can change significantly the motivic properties of the hypersurfaces, with respect to the classical case.


Span Tree Parametric Representation Star Product Multiple Zeta Grothendieck Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aluffi, P., Marcolli, M.: Feynman motives and deletion-contraction relations. In: Topology of Algebraic Varieties and Singularities, Vol. 538, Contemporary Mathematics, 2011, pp. 21–64Google Scholar
  2. 2.
    Aluffi P., Marcolli M.: A motivic approach to phase transitions in Potts models. J. Geom. Phys. 63, 6–31 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Belkale P., Brosnan P.: Matroids, motives, and a conjecture of Kontsevich. Duke Math. J. 116, 147–188 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bittner F.: The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140(2), 1011–1032 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bjorken, J., Drell, S.: Relativistic Quantum Fields, Maidenheach: McGraw-Hill, 1965Google Scholar
  6. 6.
    Bloch S.: Motives associated to graphs. Jpn. J. Math. 2, 165–196 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bloch, S.: Motives associated to sums of graphs. In: The Geometry of Algebraic Cycles (Clay Mathematics Proceedings), Vol. 9, AMS, 2010, pp. 137–145Google Scholar
  8. 8.
    Bloch S., Esnault E., Kreimer D.: On motives associated to graph polynomials. Commun. Math. Phys. 267, 181–225 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Broadhurst D., Kreimer D.: Association of multiple zeta values with positive knots via feynman diagrams up to 9 loops. Phys. Lett. B 393, 403–412 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Brown F.: Multiple zeta values and periods of moduli spaces \({\mathfrak{M}_{0,n}}\) . Annales scientifiques de l’ENS 42(fascicule 3), 371–489 (2009)zbMATHGoogle Scholar
  11. 11.
    Brown, F., Doryn, D.:Framings for graph hypersurfaces, arXiv:1301.3056[math.AG] (2013)Google Scholar
  12. 12.
    Brown F., Schnetz O.: A K3 in ϕ4. Duke Math. J. 161(10), 1817–1862 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Brown, F., Schnetz, O.:Modular forms in quantum field theory, arXiv:1304.5342[math.AG] (2013)Google Scholar
  14. 14.
    Connes, A., Marcolli, M.: Noncommutative geometry, quantum fields and motives, Vol. 55, Colloquium Publications, AMS, 2007Google Scholar
  15. 15.
    Freidel L., Livine E.: Effective 3d quantum gravity and non-commutative quantum field theory. Phys. Rev. Lett. 96, 221301 (2006)ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Freidel L., Livine E.: Ponzano–Regge model revisited III: Feynman diagrams and effective field theory. Class Quant. Grav. 23, 2021 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Freidel L., Louapre D.: Ponzano–Regge model revisited I: Gauge fixing, observables and interacting spinning particles. Class. Quant. Grav. 21, 5685–5726 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Gillet H., Soulé C.: Descent, motives and K-theory. J. Reine Angew. Math. 478, 127–176 (1996)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Goncharov A.B., Manin Yu.I.: Multiple ζ-motives and moduli spaces \({\overline{\mathfrak{m}}_{0,n}}\) . Compos. Math. Soc. 12(2), 569–618 (1999)zbMATHGoogle Scholar
  20. 20.
    Gurau R., Rivasseau V.: Parametric representation of noncommutative field theory. Commun. Math. Phys. 272, 811–835 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Itzykson, C., Zuber, J.B.:Quantum Field Theory, New York: Dover Publications, 2006Google Scholar
  22. 22.
    Krajewski T., Rivasseau V., Tanasa A., Wang Z.: . J. Noncommut. Geom. 4, 29–82 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Marcolli, M.: Feynman motives, Singapore: World Scientific, 2009Google Scholar
  24. 24.
    Reine M.: Counting rational points over quiver moduli. Int. Math. Res. Lett. 70456, 1–19 (2006)Google Scholar
  25. 25.
    Stembridge J.: Counting points on varieties over finite fields related to a conjecture of Kontsevich. Ann. Comb. 2(4), 365–385 (1998)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Tanasa, A.: Overview of the parametric representation of renormalizable non-commutative field theory. J. Phys. Conf. Ser. 103(012012) (2008)Google Scholar
  27. 27.
    Terasoma T.: Mixed tate motives and multiple zeta values. Invent. Math. 149(2), 339–369 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA

Personalised recommendations