Advertisement

Communications in Mathematical Physics

, Volume 327, Issue 2, pp 443–479 | Cite as

Gauge Fixing and Classical Dynamical r-Matrices in ISO(2, 1)-Chern–Simons Theory

  • C. MeusburgerEmail author
  • T. Schönfeld
Article

Abstract

We apply the Dirac gauge fixing procedure to Chern–Simons theory with gauge group ISO(2, 1) on manifolds \({\mathbb{R} \times S}\), where S is a punctured oriented surface of general genus. For all gauge fixing conditions that satisfy certain structural requirements, this yields an explicit description of the Poisson structure on the moduli space of flat ISO(2, 1)-connections on S in terms of classical dynamical r-matrices for \({\mathfrak{iso}}\) (2, 1). We show that the Poisson structures and classical dynamical r-matrices arising from different gauge fixing conditions are related by dynamical ISO(2, 1)-valued transformations that generalise the usual gauge transformations of classical dynamical r-matrices. By means of these transformations, it is possible to classify all Poisson structures and classical dynamical r-matrices obtained from such gauge fixings. Generically these Poisson structures combine classical dynamical r-matrices for non-conjugate Cartan subalgebras of \({\mathfrak{iso}}\)(2, 1).

Keywords

Modulus Space Poisson Bracket Poisson Structure Jacobi Identity Cartan Subalgebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achúcarro A., Townsend P.: A Chern–Simons action for three-dimensional anti-de Sitter supergravity theories. Phys. Lett. B 180, 89–92 (1986). doi: 10.1016/0370-2693(86)90140-1 ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48 445–495 (1998). arXiv:dg-ga/9707021 Google Scholar
  3. 3.
    Alekseev, A.Y.,Grosse, H., Schomerus, V.: Combinatorial quantization of the Hamiltonian Chern–Simons theory I. Commun. Math. Phys. 172, 317–358 (1995). doi: 10.1007/BF02099431, arXiv:hep-th/9403066 Google Scholar
  4. 4.
    Alekseev, A.Y., Grosse, H., Schomerus, V.: Combinatorial quantization of the Hamiltonian Chern–Simons theory II. Commun. Math. Phys. 174, 561–604 (1996). doi: 10.1007/BF02101528, arXiv:hep-th/9408097 Google Scholar
  5. 5.
    Alekseev, A.Y., Malkin, A.Z.: Symplectic structure of the moduli space of flat connection on a Riemann surface. Commun. Math. Phys. 169, 99–119 (1995). doi: 10.1007/BF02101598, arXiv:hep-th/9312004v1
  6. 6.
    Alekseev, A.Y., Schomerus, V.: Representation theory of Chern–Simons observables. Duke Math. J. 85, 447–510 (1996). doi: 10.1215/S0012-7094-96-08519-1, arXiv:q-alg/9503016
  7. 7.
    Atiyah M., Bott R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 54, 523–615 (1983). doi: 10.1098/rsta.1983.0017 ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bar-Natan D., Witten E.: Perturbative expansion of Chern–Simons theory with non-compact gauge group. Commun. Math. Phys. 141, 423–440 (1991). doi: 10.1007/BF02101513 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Birman, J.S.:Braids, links, and mapping class groups, volume 82 of Annals of Mathematics Studies. Princeton University Press, Princeton. ISBN 9780691081496 (1974)Google Scholar
  10. 10.
    Buffenoir, E.,Noui, K.: Unfashionable observations about three dimensional gravity (2003). Preprint, arXiv:gr-qc/0305079
  11. 11.
    Buffenoir, E., Noui, K., Roche, P.: Hamiltonian quantization of Chern Simons theory with SL(2, C) group. Class. Quantum Gravity 19, 4953–5015 (2002). doi: 10.1088/0264-9381/19/19/313, arXiv:hep-th/0202121
  12. 12.
    Buffenoir, E., Roche, P.: Two dimensional lattice gauge theory based on a quantum group. Commun. Math. Phys. 170, 669–698 (1995). doi: 10.1007/BF02099153, arXiv:hep-th/9405126 Google Scholar
  13. 13.
    Buffenoir, E., Roche, P.: Chern–Simons theory with sources and dynamical quantum groups I: canonical analysis and algebraic structures (2005). Preprint, arXiv:hep-th/0505239
  14. 14.
    de Sousa Gerbert P.: On spin and (quantum) gravity in 2 + 1 dimensions. Nucl. Phys. B 346, 440–472 (1990). doi: 10.1016/0550-3213(90)90288-O ADSCrossRefGoogle Scholar
  15. 15.
    Dirac P.A.M.: Forms of relativistic dynamics. Rev. Modern Phys. 21, 392 (1949). doi: 10.1103/RevModPhys.21.392 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Dirac P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950). doi: 10.4153/CJM-1950-012-1 CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Etingof, P., Schiffmann, O.: Lectures on the dynamical Yang–Baxter equations (1999). Preprint, arXiv:math/9908064
  18. 18.
    Etingof, P.,Schiffmann, O.: On the moduli space of classical dynamical r-matrices. Math. Res. Lett. 8, 157–170 (2001). arXiv:math/0005282 Google Scholar
  19. 19.
    Etingof, P., Varchenko, A.: Geometry and classification of solutions of the classical dynamical Yang–Baxter equation. Commun. Math. Phys. 192, 77–120 (1998). doi: 10.1007/s002200050292, arXiv:q-alg/9703040
  20. 20.
    Fehér, L.: Poisson–Lie dynamical r-matrices from Dirac reduction. Czech. J. Phys. 54, 1265–1273 (2004). doi: 10.1007/s10582-004-9788-9, arXiv:math/0406274 Google Scholar
  21. 21.
    Fehér, L., Gábor, A., Pusztai, B.G.: On dynamical r-matrices obtained from Dirac reduction and their generalizations to affine Lie algebras. J. Phys. A Math. Gen. 34, 7235 (2001). doi: 10.1088/0305-4470/34/36/313, arXiv:math-ph/0105047
  22. 22.
    Fock, V.V., Rosly, A.A.: Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix. Am. Math. Soc. Transl. 191, 67–86 (1999). arXiv:math/9802054
  23. 23.
    Gott J.: Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions. Phys. Rev. Lett. 66, 1126–1129 (1991). doi: 10.1103/PhysRevLett.66.1126 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton. ISBN 0691037698 (1994)Google Scholar
  25. 25.
    Martín-García, J.M.: xPerm: fast index canonicalization for tensor computer algebra. Comput. Phys. Commun. 179, 597–603 (2008). doi: 10.1016/j.cpc.2008.05.009, arXiv:0803.0862 Google Scholar
  26. 26.
    Meusburger, C., Noui, K.: Combinatorial quantisation of the Euclidean torus universe. Nucl. Phys. B 841, 463–505 (2010). doi: 10.1016/j.nuclphysb.2010.08.014, arXiv:1007.4615 Google Scholar
  27. 27.
    Meusburger, C., Noui, K.: The Hilbert space of 3d gravity: quantum group symmetries and observables. Adv. Theor. Math. Phys. 14, 1651–1716 (2010). arXiv:0809.2875
  28. 28.
    Meusburger, C., Schönfeld, T.: Gauge fixing in (2+1)-gravity: Dirac bracket and spacetime geometry. Class. Quantum Gravity 28, 125008 (2011). doi: 10.1088/0264-9381/28/12/125008, arXiv:1012.1835
  29. 29.
    Meusburger, C., Schroers, B.J.: Poisson structure and symmetry in the Chern–Simons formulation of (2 + 1)-dimensional gravity. Class. Quantum Gravity 20, 2193–2233 (2003). doi: 10.1088/0264-9381/20/11/318, arXiv:gr-qc/0301108
  30. 30.
    Meusburger, C., Schroers, B.J.: The quantisation of Poisson structures arising in Chern–Simons theory with gauge group \({G \ltimes \mathfrak{g}^*}\). Adv. Theor. Math. Phys. 7, 1003–1042 (2004). arXiv:hep-th/0310218
  31. 31.
    Meusburger, C., Schroers B.J. Mapping class group actions in Chern–Simons theory with gauge group \({G\ltimes\mathfrak{g}^*}\). Nucl. Phys. B 706, 569–597 (2005). doi: 10.1016/j.nuclphysb.2004.10.057, arXiv:hep-th/0312049 Google Scholar
  32. 32.
    Noui, K., Perez, A.: Three-dimensional loop quantum gravity: coupling to point particles. Class. Quantum Gravity 22, 4489–4513 (2005). doi: 10.1088/0264-9381/22/21/005, arXiv:gr-qc/0402111
  33. 33.
    Reshetikhin N.Y., Turaev V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991). doi: 10.1007/BF01239527 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Schiffmann, O.: On classification of dynamical r-matrices. Math. Res. Lett. 5, 13–30 (1998). arXiv:q-alg/9706017 Google Scholar
  35. 35.
    Stachura P.: Poisson–Lie structures on Poincaré and Euclidean groups in three dimensions. J. Phys. A Math. Gen. 31, 4555–4564 (1998). doi: 10.1088/0305-4470/31/19/018 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Witten E.: 2 +  1 dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46–78 (1988). doi: 10.1016/0550-3213(88)90143-5 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989). doi: 10.1007/BF01217730
  38. 38.
    Witten E.: Topology-changing amplitudes in (2+1)-dimensional gravity. Nucl. Phys. B 323, 113 (1989). doi: 10.1016/0550-3213(89)90591-9 ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    Witten E.: Quantization of Chern–Simons gauge theory with complex gauge group. Commun. Math. Phys. 137, 29–66 (1991). doi: 10.1007/BF02099116 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Witten, E.: Analytic continuation of Chern–Simons theory. In: Andersen, J.E., Boden, H., Hahn, A., Benjamin, H. (eds.) Chern–Simons Gauge Theory: 20 Years After, p. 347. American Mathematical Society, Providence (2011). arXiv:1001.2933
  41. 41.
    Xu, P.: Triangular dynamical r-matrices and quantization. Adv. Math. 166, 1–49 (2002). doi: 10.1006/aima.2001.2000, arXiv:math/0005006

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department MathematikFriedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations