Communications in Mathematical Physics

, Volume 330, Issue 2, pp 581–637 | Cite as

Renormalization of a SU(2) Tensorial Group Field Theory in Three Dimensions

  • Sylvain CarrozzaEmail author
  • Daniele Oriti
  • Vincent Rivasseau


We address in this paper the issue of renormalizability for SU(2) Tensorial Group Field Theories (TGFT) with geometric Boulatov-type conditions in three dimensions. We prove that interactions up to ϕ 6-tensorial type are just renormalizable without any anomaly. Our new models define the renormalizable TGFT version of the Boulatov model and provide therefore a new approach to quantum gravity in three dimensions. Among the many new technical results established in this paper are a general classification of just renormalizable models with gauge invariance condition, and in particular concerning properties of melonic graphs, the second order expansion of melonic two point subgraphs needed for wave-function renormalization.


Quantum Gravity Heat Kernel Loop Quantum Gravity Tensor Model Spin Foam Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oriti, D.: The Group field theory approach to quantum gravity. In: Oriti, D. (ed.) Approaches to Quantum Gravity, pp. 310–331. University Press, Cambridge (2009). arXiv:gr-qc/0607032
  2. 2.
    Oriti, D.: Quantum gravity as a quantum field theory of simplicial geometry. In: Fauser, B. (ed.) Quantum Gravity, pp. 101–126. Birkhäuser, Basel (2007). [gr-qc/0512103]Google Scholar
  3. 3.
    Oriti, D.: The microscopic dynamics of quantum space as a group field theory. In: Ellis, G., Murugan, J., Weltman, A. (eds.) Foundations of Space and Time. Cambridge University Press, Cambridge (2012). arXiv:1110.5606 [hep-th]
  4. 4.
    Rivasseau, V.: Quantum gravity and renormalization: the tensor track. In: AIP Conference Proceedings, vol. 1444, p. 18 (2011). arXiv:1112.5104; The tensor track: an update. arXiv:1209.5284 [hep-th]
  5. 5.
    Thiemann T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ashtekar A., Lewandowski J.: Background independent quantum gravity: a status report. Class Quant. Grav. R53–R152 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Rovelli C.: Quantum Gravity. Cambridge University Press, Cambridge (2006)Google Scholar
  8. 8.
    David, F.: Planar diagrams, two-dimensional lattice gravity and surface models. Nucl. Phys. 45, B257 (1985)Google Scholar
  9. 9.
    Ginsparg, P.H.: Matrix models of 2-d gravity (1991). arXiv: hep-th/9112013
  10. 10.
    Di Francesco, P., Ginsparg, P., Zinn-Justin, J.: 2-D Gravity and random matrices. Phys. Rept. 254, 1–133 (1995). hep-th/9306153Google Scholar
  11. 11.
    Ginsparg, P., Moore, G.: Lectures on 2D Gravity and 2D string theory (1993). hep-th/9304011Google Scholar
  12. 12.
    Perez, A.: The spin foam approach to quantum gravity. Liv. Rev. Relat. 16 (2013). arXiv:1205.2019
  13. 13.
    Rovelli, C.: Zakopane lectures on loop gravity. PoS QGQGS 2011, 003 (2011). arXiv:1102.3660 [gr-qc]
  14. 14.
    Freidel, L., Krasnov, K.: A new spin foam model for 4d gravity. Class. Quant. Grav. 25, 125018 (2008). arXiv:0708.1595
  15. 15.
    Engle, J., Pereira, R., Rovelli, C.: Flipped spinfoam vertex and loop gravity. Nucl. Phys. B 798, 251 (2008). arXiv:0708.1236
  16. 16.
    Engle, J., Livine, E., Pereira, R., Rovelli, C.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B 799, 136 (2008). arXiv:0711.0146
  17. 17.
    Ben Geloun, J., Gurau, R., Rivasseau, V.: EPRL/FK group field theory. Europhys. Lett. 92 60008 (2010). arXiv:1008.0354 [hep-th]
  18. 18.
    Baratin, A., Oriti, D.:Group field theory and simplicial gravity path integrals: a model for Holst–Plebanski gravity. Phys. Rev. D 85, 044003 (2012). arXiv:1111.5842 [hep-th]
  19. 19.
    Gross M.: Tensor models and simplicial quantum gravity in > 2-D. Nucl. Phys. Proc. Suppl. 25, 144–149 (1992)CrossRefGoogle Scholar
  20. 20.
    Ambjorn J., Durhuus B., Jonsson T.: Three-dimensional simplicial gravity and generalized matrix models. Mod. Phys. Lett. A 6, 1133–1146 (1991)MathSciNetGoogle Scholar
  21. 21.
    Sasakura N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6, 2613–2624 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Gurau, R., Ryan, J. P.: Colored tensor models—a review. SIGMA 8, 020 (2012). arXiv:1109.4812 [hep-th]
  23. 23.
    Gurau, R.: Universality for random tensors. arXiv:1111.0519 [math.PR]
  24. 24.
    Gurau, R.: The 1/N expansion of colored tensor models. Annales Henri Poincare 12, 829 (2011). arXiv:1011.2726 [gr-qc]
  25. 25.
    Gurau, R., Rivasseau, V.: The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95, 50004 (2011). arXiv:1101.4182 [gr-qc]Google Scholar
  26. 26.
    Gurau, R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincaré 13(3), 399–423 (2012). arXiv:1102.5759 [gr-qc]Google Scholar
  27. 27.
    Bonzom, V., Erbin, H.: Coupling of hard dimers to dynamical lattices via random tensors. J. Stat. Mech. 1209, P09009 (2012). arXiv:1204.3798 [cond-mat.stat-mech]
  28. 28.
    Bonzom, V., Gurau, R.,Smerlak, M.: Universality in p-spin glasses with correlated disorder. J. State. Mech. L02003 (2013). arXiv:1206.5539 [hep-th]
  29. 29.
    Oriti, D.: Group fieldtheory as the microscopic description of the quantum spacetime fluid: a new perspective on the continuum in quantum gravity. PoS QG -PH, 030 (2007). arXiv:0710.3276 [gr-qc]
  30. 30.
    Sindoni, L.: Gravity as an emergent phenomenon: a GFT perspective. arXiv:1105.5687 [gr-qc]
  31. 31.
    Gielen, S., Oriti, D., Sindoni, L.: Cosmology from group field theory formalism for quantum grauity. Phys. Rev. Lett. 111 031301 (2013). arXiv:1303.3576 [gr-qc]
  32. 32.
    Bonzom, V., Gurau, R., Riello, A., Rivasseau, V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B853, 174–195 (2011). arXiv:1105.3122 [hep-th]
  33. 33.
    Bonzom, V., Gurau, R., Rivasseau, V.: The Ising model on random lattices in arbitrary dimensions. Phys. Lett. B 711, 88–96 (2012). arXiv:1108.6269 [hep-th]Google Scholar
  34. 34.
    Benedetti, D., Gurau, R.: Phase transition in dually weighted colored tensor models. Nucl. Phys. B 855, 420–437 (2012). arXiv:1108.5389 [hep-th]
  35. 35.
    Ben Geloun, J.: Classical group field theory. J. Math. Phys. 53, 022901 (2012). arXiv:1107.3122 [hep-th]Google Scholar
  36. 36.
    Baratin, A., Girelli, F., Oriti, D.: Diffeomorphisms in group field theories. Phys. Rev. D 83, 104051 (2011). arXiv:1101.0590 [hep-th]
  37. 37.
    Gurau, R.: A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B 852, 592 (2011). arXiv:1105.6072 [hep-th]
  38. 38.
    Oriti, D., Sindoni, L.: Towards classical geometrodynamics from group field theory hydrodynamics. New J. Phys. 13, 025006 (2011). arXiv:1010.5149 [gr-qc]
  39. 39.
    Girelli, F., Livine, E.R., Oriti, D.: 4d deformed special relativity from group field theories. Phys. Rev. D 81, 024015 (2010). arXiv:0903.3475 [gr-qc]
  40. 40.
    Livine, E.R., Oriti, D., Ryan, J.P.: Effective hamiltonian constraint from group field theory. Class. Quant. Grav. 28, 245010 (2011). arXiv:1104.5509 [gr-qc]
  41. 41.
    Calcagni, G., Gielen, S., Oriti, D.: Group field cosmology: a cosmological field theory of quantum geometry. Class. Quant. Grav. 29, 105005 (2012). arXiv:1201.4151 [gr-qc]
  42. 42.
    Ben Geloun, J., Bonzom, V.: Radiative corrections in the Boulatov-Ooguri tensor model: The 2-point function. Int. J. Theor. Phys. 50, 2819 (2011). arXiv:1101.4294 [hep-th]Google Scholar
  43. 43.
    Riello, A.: Self-energy of the Lorentzian EPRL-FK spin foam model of quantum gravity. Phys. Rev. D 88, 024011 (2013). arXiv:1302.1781 [gr-qc]
  44. 44.
    Freidel, L., Gurau, R., Oriti, D.: Group field theory renormalization—the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009). arXiv:0905.3772 [hep-th]
  45. 45.
    Ben Geloun, J., Krajewski, T., Magnen, J., Rivasseau, V.: Linearized group field theory and power counting theorems. Class. Quant. Grav. 27, 155012 (2010). arXiv:1002.3592 [hep-th]Google Scholar
  46. 46.
    Bonzom, V., Smerlak, M.: Bubble divergences from cellular cohomology. Lett. Math. Phys. 93, 295–305 (2010). arXiv:1004.5196 [gr-qc]Google Scholar
  47. 47.
    Bonzom, V., Smerlak, M.: Bubble divergences from twisted cohomology. Commun. Math. Phys. 312(2), 399–426 (2012). arXiv:1008.1476 [math-ph]Google Scholar
  48. 48.
    Bonzom, V., Smerlak, M.: Bubble divergences: sorting out topology from cell structure. Ann. Henri Poincaré 13, 185–208 (2012). arXiv:1103.3961 [gr-qc]Google Scholar
  49. 49.
    Ben Geloun, J., Rivasseau, V.: A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. (2012). doi: 10.1007/s00220-012-1549-1 arXiv:1111.4997 [hep-th]
  50. 50.
    Ben Geloun, J., Rivasseau, V.: Addendum to A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 322(3), 957–965 (2013). arXiv:1209.4606 [pdf, other]Google Scholar
  51. 51.
    Ben Geloun, J., Samary, D.O.: 3D tensor field theory: renormalization and one-loop β-functions. Ann. Henri poicaré 14(6), 1599–1642 (2013). arXiv:1201.0176 [hep-th]
  52. 52.
    Ben Geloun, J.: Two and four-loop β-functions of rank 4 renormalizable tensor field theories. Class. Quant. Grav. 29, 235011 (2012). arXiv:1205.5513 [hep-th]
  53. 53.
    Carrozza, S., Oriti, D.: Bounding bubbles: the vertex representation of 3d group field theory and the suppression of pseudo-manifolds. Phys. Rev. D 85, 044004 (2012). [arXiv:1104.5158 [hep-th]]
  54. 54.
    Carrozza, S., Oriti, D.: Bubbles and jackets: new scaling bounds in topological group field theories. JHEP 1206, 092 (2012). arXiv:1203.5082 [hep-th]
  55. 55.
    Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of tensorial group field theories: Abelian U(1) models in four dimensions. arXiv:1207.6734 [hep-th]
  56. 56.
    Geloun, J.B., Livine, E.R.: Some classes of renormalizable tensor models. J. Math. Phys. 54, 082303 (2013). arXiv:1207.0416 [hep-th]Google Scholar
  57. 57.
    Samary, D.O., Vignes-Tourneret, F.: Just Renormalizable TGFT’s on U(1)d with Gauge invariance. arXiv:1211.2618 [hep-th]
  58. 58.
    Rivasseau, V.: Constructive matrix theory. JHEP 0709, 008 (2007). arXiv:0706.1224 [hep-th]
  59. 59.
    Magnen, J., Rivasseau, V.: Constructive phi**4 field theory without tears. Annales Henri Poincare 9, 403 (2008). arXiv:0706.2457 [math-ph]Google Scholar
  60. 60.
    Magnen, J., Noui, K., Rivasseau, V., Smerlak, M.: Scaling behaviour of three-dimensional group field theory. Class. Quant. Grav. 26, 185012 (2009). arXiv:0906.5477 [hep-th]Google Scholar
  61. 61.
    Rivasseau, V., Wang, Z.: Loop vertex expansion for Phi**2K theory in zero dimension. J. Math. Phys. 51, 092304 (2010). arXiv:1003.1037 [math-ph]Google Scholar
  62. 62.
    Oriti, D.: Generalized group field theories and quantum gravity transition amplitudes. Phys. Rev. D73, 061502. gr-qc/0512069 (2006)Google Scholar
  63. 63.
    Oriti, D.: Group field theory and simplicial quantum gravity. Class. Quant. Grav. 27, 145017 (2010). arXiv:0902.3903 [gr-qc]
  64. 64.
    Oriti, D., Tlas, T.: Encoding simplicial quantum geometry in group field theories. Class. Quant. Grav. 27, 135018 (2010). arXiv:0912.1546 [gr-qc]
  65. 65.
    Bonzom, V., Gurau, R., Rivasseau, V.: Random tensor models in the large N limit: uncoloring the colored tensor models. Phys. Rev. D 85, 084037 (2012). arXiv:1202.3637 [hep-th]
  66. 66.
    Ferri M., Gagliardi C.: Crystallisation moves. Pac. J. Math. 100(1), 85–103 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  67. 67.
    Vince A.: n-Graphs. Disc. Math. 72(13), 367–380 (1988)Google Scholar
  68. 68.
    Vince A.: The classification of closed surfaces using colored graphs. Graphs Combin. 975–84 (1993)zbMATHMathSciNetGoogle Scholar
  69. 69.
    Boulatov, D.V: A Model of three-dimensional lattice gravity. Mod. Phys. Lett. A7, 1629–1646 (1992). arXiv:hep-th/9202074
  70. 70.
    Rivasseau, V.: From Perturbative to Constructive Renormalization, Princeton Series in Physics. Princeton University Press, Princeton (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sylvain Carrozza
    • 1
    • 2
    Email author
  • Daniele Oriti
    • 2
  • Vincent Rivasseau
    • 1
    • 3
  1. 1.Laboratoire de Physique Théorique, CNRS UMR 8627Université Paris SudOrsay CedexFrance
  2. 2.Max Planck Institute for Gravitational Physics, Albert Einstein InstituteGolmGermany
  3. 3.Perimeter InstituteWaterlooCanada

Personalised recommendations