Alm S.E., Janson S.: Random self-avoiding walks on one-dimensional lattices. Comm. Stat. Stoch. Models 6(2), 169–212 (1990)
Article
MATH
MathSciNet
Google Scholar
Balian R., Toulouse G.: Critical exponents for transitions with n = −2 components of the order parameter. Phys. Rev. Lett. 20, 544–546 (1973)
ADS
Article
Google Scholar
Batchelor M.T., Bennet-Wood D., Owczarek A.L.: Two-dimensional polymer networks at a mixed boundary: surface and wedge exponents. Eur. Phys. J. B 5(1), 139–142 (1998)
ADS
Article
Google Scholar
Batchelor M.T., Yung C.M.: Exact results for the adsorption of a flexible self-avoiding polymer chain in two dimensions. Phys. Rev. Lett. 74, 2026–2029 (1995)
ADS
Article
Google Scholar
Beaton, N.R.: The critical surface fugacity of self-avoiding walks on a rotated honeycomb lattice. Journal of Physics A: Mathematical and Theoretical 47(2014), 075003+
Google Scholar
Beaton, N.R., Guttmann, A.J., Jensen, I.: A numerical adaptation of SAW identities from the honeycomb to other 2D lattices. J. Phys. A, 45(3), 035201 (18pp) (2012). Arxiv:1110.1141
Beaton, N.R., Guttmann, A.J., Jensen, I.: Two-dimensional self-avoiding walks and polymer adsorption: critical fugacity estimates. J. Phys. A 45(5), 055208 (12pp) (2012). Arxiv:1110.6695
Google Scholar
Binder, K.: Critical behaviour at surfaces. In: Phase transitions and critical phenomena, Vol. 8. London: Academic Press, 1983, pp. 1–144
Gennes P.-G.: Exponents for the excluded-volume problem as derived by the Wilson method. Phys. Lett. A 38, 339–340 (1972)
ADS
Article
Google Scholar
Domany E., Mukamel D., Nienhuis B., Schwimmer A.: Duality relations and equivalences for models with O(N) and cubic symmetry. Nucl. Phys. B 190, 279–287 (1981)
ADS
Article
Google Scholar
Duminil-Copin, H., Hammond, A.: Self-avoiding walk is sub-ballistic. Comm. Math. Phys. 324(2), 401–423 (2013). Arxiv:1205.0401
Google Scholar
Duminil-Copin, H., Smirnov, S.: The connective constant of the honeycomb lattice equals \({\sqrt{2+\sqrt 2}}\). Ann. Math. 175(3), 1653–1665 (2012). Arxiv:1007.0575
Google Scholar
Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge: Cambridge University Press, 2009
Flory, P.: Principles of Polymer Chemistry. New York: Cornell University Press, 1953
Hammersley J.M., Torrie G.M., Whittington S.G.: Self-avoiding walks interacting with a surface. J. Phys. A 15(2), 539–571 (1982)
ADS
Article
MathSciNet
Google Scholar
Janse van Rensburg E.J., Orlandini E., Whittingon S.G.: Self-avoiding walks in a slab: rigorous results. J. Phys. A 39(45), 13869–13902 (2006)
ADS
Article
MATH
MathSciNet
Google Scholar
Kesten H.: On the number of self-avoiding walks. J. Math. Phys. 4, 960–969 (1963)
ADS
Article
MATH
MathSciNet
Google Scholar
Klazar, M.: On the theorem of Duminil-Copin and Smirnov about the number of self-avoiding walks in the hexagonal lattice. Arxiv:1102.5733
Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal geometry and applications: a jubilee of Benoî t Mandelbrot, Part 2. Proc. Sympos. Pure Math. Vol. 72, Providence, RI: Amer. Math. Soc., 2004, pp. 339–364
Madras, N., Slade, G.: The self-avoiding walk. In: Probability and its Applications. Boston, MA: Birkhäuser Boston Inc., 1993
Nienhuis B.: Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett. 49, 1062–1065 (1982)
ADS
Article
MathSciNet
Google Scholar
Orr W.J.C.: Statistical treatment of polymer solutions at infinite dilution. Trans. Faraday Soc. 43, 12–27 (1947)
Article
Google Scholar
Rychlewski G., Whittington S.G.: Self-avoiding walks and polymer adsorption: low temperature behaviour. J. Stat. Phys. 145(3), 661–668 (2011)
ADS
Article
MATH
MathSciNet
Google Scholar
Smirnov, S.: Discrete complex analysis and probability. In: Proceedings of the International Congress of Mathematicians. Vol. I, New Delhi: Hindustan Book Agency, 2010, pp. 595–621
Stanley H.E.: Dependence of critical properties on dimensionality of spins. Phys. Rev. Lett. 20, 589–593 (1968)
ADS
Article
Google Scholar
Janse van Rensburg, E.J.: The statistical mechanics of interacting walks, polygons, animals and vesicles. In: Oxford Lecture Series in Mathematics and its Applications, Vol. 18. Oxford: Oxford University Press, 2000
Whittington S.G.: Self-avoiding walks terminally attached to an interface. J. Chem. Phys. 63, 779–785 (1975)
ADS
Article
Google Scholar