Skip to main content

Quantum Random Walks with General Particle States

Abstract

A convergence theorem is obtained for quantum random walks with particles in an arbitrary normal state. This unifies and extends previous work on repeated-interactions models, including that of Attal and Pautrat (Ann Henri Poincaré 7:59–104 2006) and Belton (J Lond Math Soc 81:412–434, 2010; Commun Math Phys 300:317–329, 2010). When the random-walk generator acts by ampliation and either multiplication or conjugation by a unitary operator, it is shown that the quantum stochastic cocycle which arises in the limit is driven by a unitary process.

This is a preview of subscription content, access via your institution.

References

  1. Attal S., Joye A.: The Langevin equation for a quantum heat bath. J. Funct. Anal. 247(2), 253–288 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Attal S., Joye A.: Weak coupling and continuous limits for repeated quantum interactions. J. Stat. Phys. 126(6), 1241–1283 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  3. Attal S., Pautrat Y.: From repeated to continuous quantum interactions. Ann. Henri Poincaré 7(1), 59–104 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Belton, A.C.R.: Approximation via toy Fock space—the vacuum-adapted viewpoint. In: Belavkin, V.P., Guţă, M. (eds.) Quantum Stochastics and Information. Singapore: World Scientific, 2008, pp. 3–22

  5. Belton A.C.R.: Random-walk approximation to vacuum cocycles. J. London Math. Soc. (2) 81(2), 412–434 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Belton A.C.R.: Quantum random walks and thermalisation. Commun. Math. Phys. 300(2), 317–329 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bouten L., van Handel R., James M.R.: A discrete invitation to quantum filtering and feedback control. SIAM Rev. 51(2), 239–316 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Bruneau L., Joye A., Merkli M.: Asymptotics of repeated interaction quantum systems. J. Funct. Anal. 239(1), 310–344 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bruneau L., Pillet C.-A.: Thermal relaxation of a QED cavity. J. Stat. Phys. 134(5–6), 1071–1095 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Gohm R.: Non-commutative Markov chains and multi-analytic operators. J. Math. Anal. Appl. 364(1), 275–288 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gough J.: Holevo-ordering and the continuous-time limit for open Floquet dynamics. Lett. Math. Phys. 67(3), 207–221 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Gough J., James M.R.: The series product and its application to quantum feedforward and feedback networks. IEEE Trans. Automat. Control 54(11), 2530–2544 (2009)

    Article  MathSciNet  Google Scholar 

  13. Lindsay, J.M.: Quantum stochastic analysis—an introduction. In: Schürmann, M., Franz, U. (eds.) Quantum Independent Increment Processes I. Lecture Notes in Math. Vol. 1865, Berlin: Springer, 2005, pp. 181–271

  14. Lindsay J.M., Wills S.J.: Existence, positivity and contractivity for quantum stochastic flows with infinite dimensional noise. Prob. Th. Rel. Fields 116(4), 505–543 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lindsay J.M., Wills S.J.: Existence of Feller cocycles on a C*-algebra. Bull. London Math. Soc. 33(5), 613–621 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sahu L.: Quantum random walks and their convergence to Evans–Hudson flows. Proc. Indian Acad. Sci. Math. Sci. 118(3), 443–465 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander C. R. Belton.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Belton, A.C.R. Quantum Random Walks with General Particle States. Commun. Math. Phys. 328, 573–596 (2014). https://doi.org/10.1007/s00220-014-1886-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1886-3

Keywords