Communications in Mathematical Physics

, Volume 328, Issue 2, pp 849–865 | Cite as

Schoenberg Correspondence on Dual Groups

  • Michael Schürmann
  • Stefan VoßEmail author


As in the classical case of Lévy processes on a group, Lévy processes on a Voiculescu dual group are constructed from conditionally positive functionals. It is essential for this construction that Schoenberg correspondence holds for dual groups: The exponential of a conditionally positive functional is a convolution semigroup of states.


Free Product Linear Functional Vector Space Versus Algebra Homomorphism Dual Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BGS02.
    Ben Ghorbal A., Schürmann M.: Non-commutative notions of stochastic independence. Math. Proc. Camb. Philos. Soc. 133(3), 531–561 (2002)CrossRefzbMATHGoogle Scholar
  2. BGS05.
    Ben Ghorbal A., Schürmann M.: Quantum Lévy processes on dual groups. Math. Z. 251(1), 147–165 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. Boz86.
    Bożejko M.: Positive definite functions on the free group and the noncommutative Riesz product. Boll. Un. Mat. Ital. A (6) 5(1), 13–21 (1986)zbMATHMathSciNetGoogle Scholar
  4. DNR01.
    Dăscălescu, S., Năstăsescu, C., Raianu, Ş.: Hopf algebras. In: Monographs and textbooks in pure and applied mathematics, Vol. 235, New York: Marcel Dekker Inc., 2001Google Scholar
  5. Fra06.
    Franz, U.: Lévy processes on quantum groups and dual groups. In: Quantum independent increment processes II. Lecture Notes in Mathematics, Vol. 1866, Berlin: Springer, 2006, pp. 161–257Google Scholar
  6. GSS92.
    Glockner P., Schürmann M., Speicher R.: Realization of free white noises. Arch. Math. (Basel) 58(4), 407–416 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  7. Hun56.
    Hunt G.A.: Semi-groups of measures on Lie groups. Trans. Am. Math. Soc. 81, 264–293 (1956)CrossRefzbMATHGoogle Scholar
  8. Lu97.
    Lu Y.G.: An interacting free Fock space and the arcsine law. Prob. Math. Stat. 17(1, Acta Univ. Wratislav. No. 1928), 149–166 (1997)zbMATHGoogle Scholar
  9. ML98.
    Mac Lane, S.: Categories for the working mathematician. In: Graduate texts in mathematics, Vol. 5, 2nd edn., New York: Springer, 1998Google Scholar
  10. Mur97.
    Muraki N.: Noncommutative Brownian motion in monotone Fock space. Commun. Math. Phys. 183(3), 557–570 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. Mur01.
    Muraki N.: Monotonic independence, monotonic central limit theorem and monotonic law of small numbers. Inf. Dime. Anal. Quan. Prob. Rel. Top. 4, 39–58 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. Mur02.
    Muraki N.: The five independences as quasi-universal products. Inf. Dime. Anal. Quan. Prob. Rel. Top. 5(1), 113–134 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  13. Mur03.
    Muraki N.: The five independences as natural products. Inf. Dime. Anal. Quan. Prob. Rel. Top. 6(3), 337–371 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. Sch38.
    Schoenberg I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938)CrossRefMathSciNetGoogle Scholar
  15. Sch91.
    Schürmann M.: Quantum stochastic processes with independent additive increments. J. Multivar. Anal. 38(1), 15–35 (1991)CrossRefzbMATHGoogle Scholar
  16. Sch93.
    Schürmann, M.: White noise on bialgebras. Lecture Notes in Mathematics, Vol. 1544, Berlin: Springer, 1993Google Scholar
  17. Spe97.
    Speicher, R.: On universal products. In: Free probability theory (Waterloo, ON, 1995). Fields Inst. Commun., Vol. 12, Providence: Am. Math. Soc., 1997, pp. 257–266Google Scholar
  18. SSV10.
    Schürmann M., Skeide M., Volkwardt S.: Transformation of quantum Lévy processes on Hopf algebras. Commun. Stoch. Anal. 4(4), 553–577 (2010)MathSciNetGoogle Scholar
  19. SV08.
    Schürmann, M., Voß, S.: Positivity of free convolution semigroups. In: Quantum probability and related topics. QP–PQ: Quantum Probab. White Noise Anal., Vol. 23, Hackensack: World Sci. Publ., 2008, pp. 225–235Google Scholar
  20. Voi85.
    Voiculescu, D.: Symmetries of some reduced free product C*-algebras. In: Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983). Lecture Notes in Mathematics, Vol. 1132, Berlin: Springer, 1985, pp. 556–588Google Scholar
  21. Voi87.
    Voiculescu D.: Dual algebraic structures on operator algebras related to free products. J. Oper. Theory 17, 85–98 (1987)zbMATHMathSciNetGoogle Scholar
  22. vW65.
    Waldenfels W.: Fast positive operatoren. Z. Wahr. Verw. Geb. 4, 159–174 (1965)CrossRefzbMATHGoogle Scholar
  23. vW73.
    von Waldenfels, W.: An approach to the theory of pressure broadening of spectral lines. In: Behara, M., Krickeberg, K., Wolfowitz, J. (eds.) Probability and information theory II. Lecture Notes in Mathematics, Vol. 296, Berlin: Springer, 1973Google Scholar
  24. vW84.
    von Waldenfels, W.: Itô solution of the linear quantum stochastic differential equation describing light emission and absorption. In: Quantum probability and applications to the quantum theory of irreversible processes (Villa Mondragone, 1982). Lecture Notes in Mathematics, Vol. 1055, Berlin: Springer, 1984, pp. 384–411Google Scholar
  25. Zha91.
    Zhang J.J.: H-algebras. Adv. Math. 89(2), 144–191 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of GreifswaldGreifswaldGermany

Personalised recommendations