Communications in Mathematical Physics

, Volume 328, Issue 2, pp 849–865 | Cite as

Schoenberg Correspondence on Dual Groups

Article

Abstract

As in the classical case of Lévy processes on a group, Lévy processes on a Voiculescu dual group are constructed from conditionally positive functionals. It is essential for this construction that Schoenberg correspondence holds for dual groups: The exponential of a conditionally positive functional is a convolution semigroup of states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BGS02.
    Ben Ghorbal A., Schürmann M.: Non-commutative notions of stochastic independence. Math. Proc. Camb. Philos. Soc. 133(3), 531–561 (2002)CrossRefMATHGoogle Scholar
  2. BGS05.
    Ben Ghorbal A., Schürmann M.: Quantum Lévy processes on dual groups. Math. Z. 251(1), 147–165 (2005)CrossRefMATHMathSciNetGoogle Scholar
  3. Boz86.
    Bożejko M.: Positive definite functions on the free group and the noncommutative Riesz product. Boll. Un. Mat. Ital. A (6) 5(1), 13–21 (1986)MATHMathSciNetGoogle Scholar
  4. DNR01.
    Dăscălescu, S., Năstăsescu, C., Raianu, Ş.: Hopf algebras. In: Monographs and textbooks in pure and applied mathematics, Vol. 235, New York: Marcel Dekker Inc., 2001Google Scholar
  5. Fra06.
    Franz, U.: Lévy processes on quantum groups and dual groups. In: Quantum independent increment processes II. Lecture Notes in Mathematics, Vol. 1866, Berlin: Springer, 2006, pp. 161–257Google Scholar
  6. GSS92.
    Glockner P., Schürmann M., Speicher R.: Realization of free white noises. Arch. Math. (Basel) 58(4), 407–416 (1992)CrossRefMATHMathSciNetGoogle Scholar
  7. Hun56.
    Hunt G.A.: Semi-groups of measures on Lie groups. Trans. Am. Math. Soc. 81, 264–293 (1956)CrossRefMATHGoogle Scholar
  8. Lu97.
    Lu Y.G.: An interacting free Fock space and the arcsine law. Prob. Math. Stat. 17(1, Acta Univ. Wratislav. No. 1928), 149–166 (1997)MATHGoogle Scholar
  9. ML98.
    Mac Lane, S.: Categories for the working mathematician. In: Graduate texts in mathematics, Vol. 5, 2nd edn., New York: Springer, 1998Google Scholar
  10. Mur97.
    Muraki N.: Noncommutative Brownian motion in monotone Fock space. Commun. Math. Phys. 183(3), 557–570 (1997)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. Mur01.
    Muraki N.: Monotonic independence, monotonic central limit theorem and monotonic law of small numbers. Inf. Dime. Anal. Quan. Prob. Rel. Top. 4, 39–58 (2001)CrossRefMATHMathSciNetGoogle Scholar
  12. Mur02.
    Muraki N.: The five independences as quasi-universal products. Inf. Dime. Anal. Quan. Prob. Rel. Top. 5(1), 113–134 (2002)CrossRefMATHMathSciNetGoogle Scholar
  13. Mur03.
    Muraki N.: The five independences as natural products. Inf. Dime. Anal. Quan. Prob. Rel. Top. 6(3), 337–371 (2003)CrossRefMATHMathSciNetGoogle Scholar
  14. Sch38.
    Schoenberg I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938)CrossRefMathSciNetGoogle Scholar
  15. Sch91.
    Schürmann M.: Quantum stochastic processes with independent additive increments. J. Multivar. Anal. 38(1), 15–35 (1991)CrossRefMATHGoogle Scholar
  16. Sch93.
    Schürmann, M.: White noise on bialgebras. Lecture Notes in Mathematics, Vol. 1544, Berlin: Springer, 1993Google Scholar
  17. Spe97.
    Speicher, R.: On universal products. In: Free probability theory (Waterloo, ON, 1995). Fields Inst. Commun., Vol. 12, Providence: Am. Math. Soc., 1997, pp. 257–266Google Scholar
  18. SSV10.
    Schürmann M., Skeide M., Volkwardt S.: Transformation of quantum Lévy processes on Hopf algebras. Commun. Stoch. Anal. 4(4), 553–577 (2010)MathSciNetGoogle Scholar
  19. SV08.
    Schürmann, M., Voß, S.: Positivity of free convolution semigroups. In: Quantum probability and related topics. QP–PQ: Quantum Probab. White Noise Anal., Vol. 23, Hackensack: World Sci. Publ., 2008, pp. 225–235Google Scholar
  20. Voi85.
    Voiculescu, D.: Symmetries of some reduced free product C*-algebras. In: Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983). Lecture Notes in Mathematics, Vol. 1132, Berlin: Springer, 1985, pp. 556–588Google Scholar
  21. Voi87.
    Voiculescu D.: Dual algebraic structures on operator algebras related to free products. J. Oper. Theory 17, 85–98 (1987)MATHMathSciNetGoogle Scholar
  22. vW65.
    Waldenfels W.: Fast positive operatoren. Z. Wahr. Verw. Geb. 4, 159–174 (1965)CrossRefMATHGoogle Scholar
  23. vW73.
    von Waldenfels, W.: An approach to the theory of pressure broadening of spectral lines. In: Behara, M., Krickeberg, K., Wolfowitz, J. (eds.) Probability and information theory II. Lecture Notes in Mathematics, Vol. 296, Berlin: Springer, 1973Google Scholar
  24. vW84.
    von Waldenfels, W.: Itô solution of the linear quantum stochastic differential equation describing light emission and absorption. In: Quantum probability and applications to the quantum theory of irreversible processes (Villa Mondragone, 1982). Lecture Notes in Mathematics, Vol. 1055, Berlin: Springer, 1984, pp. 384–411Google Scholar
  25. Zha91.
    Zhang J.J.: H-algebras. Adv. Math. 89(2), 144–191 (1991)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of GreifswaldGreifswaldGermany

Personalised recommendations