Borgs C., Chayes J.T., Kesten H., Spencer J.: Uniform boundedness of critical crossing probabilities implies hyperscaling. Random Struct. Algorithms 15(3-4), 368–413 (1999)
Article
MATH
MathSciNet
Google Scholar
Borgs C., Chayes J.T., Kesten H., Spencer J.: The birth of the infinite cluster: finite-size scaling in percolation. Commun. Math. Phys. 224(1), 153–204 (2001)
ADS
Article
MATH
MathSciNet
Google Scholar
Beffara V., Duminil-Copin H.: The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1. Probability Theory Relat. Fields 153(3–4), 511–542 (2012)
Article
MATH
MathSciNet
Google Scholar
Beffara V., Duminil-Copin H.: Smirnov’s fermionic observable away from criticality. Ann. Prob. 40(6), 2667–2689 (2012)
Article
MATH
MathSciNet
Google Scholar
Boutillier C., de Tilière B.: The critical Z-invariant Ising model via dimers: the periodic case. Probab. Theory Relat. Fields 147(3-4), 379–413 (2010)
Article
MATH
Google Scholar
Boutillier C., de Tilière B.: The critical Z-invariant Ising model via dimers: locality property. Commun. Math. Phys. 301(2), 473–516 (2011)
ADS
Article
MATH
Google Scholar
Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., Smirnov, S.: Convergence of Ising interfaces to Schramm’s SLE’s. In preparation, 2012
Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. http://arxiv.org/abs/1202.2838v1 [math-ph], 2012
Duminil-Copin, H., Garban, C.: Critical exponents in FK-I sing percolation. In preparation
Duminil-Copin H., Hongler C., Nolin P.: Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Commun. Pure App. Math. 64(9), 1165–1198 (2011)
Article
MATH
MathSciNet
Google Scholar
Duminil-Copin, H., Smirnov, S.: Conformal invariance of lattice models. arXiv:1109.1549, 2011. Probability and Statistical Physics in Two and More Dimensions, Editors David Ellwood, Charles Newman, Vladas Sidoravicius, Wendelin Werner, Clay Mathematics Proceedings, Vol. 15, Amer. Math. Soc., Providence, RI, 2012
Deng Y., Garoni T.M., Sokal A.D.: Critical speeding-up in the local dynamics of the random-cluster model. Phys. Rev. Lett. 98(23), 230602 (2007)
ADS
Article
Google Scholar
Ferdinand A., Fisher M.: Bounded and inhomogeneous ising models. I. Specific-heat anomaly of a finite lattice. Phys. Rev. 185(2), 832–846 (1969)
ADS
Article
Google Scholar
Garban, C., Hongler, C.: Specific Heat of the Ising model. In preparation
Garban, C., Pete, G.: The scaling limit of dynamical FK-percolation. In preparation
Garban C., Pete G., Schramm O.: The Fourier spectrum of critical percolation. Acta Math. 205(1), 19–104 (2010)
Article
MATH
MathSciNet
Google Scholar
Garban C., Pete G., Schramm O.: Pivotal, cluster and interface measures for critical planar percolation. J. Amer. Math. Soc. 26, 939–1024 (2013)
Article
MATH
MathSciNet
Google Scholar
Garban, C., Pete, G., Schramm, O.: The scaling limits of near-critical and dynamical percolation. http://arxiv.org/abs/1305.5526v2 [math.PR], 2013
Grimmett G.: The stochastic random-cluster process and the uniqueness of random-cluster measures. Ann. Probab. 23(4), 1461–1510 (1995)
Article
MATH
MathSciNet
Google Scholar
Grimmett, G.: Percolation. Grundlehren der mathematischen Wissenschaften 321, 2nd edn. Berlin: Springer, 1999
Grimmett, G.: The random-cluster model. Grundlehren der Mathematischen Wissenschaften 333. Berlin: Springer-Verlag, 2006
Häggström O., Jonasson J., Lyons R.: Coupling and Bernoullicity in random-cluster and Potts models. Bernoulli 8(3), 275–294 (2002)
MATH
MathSciNet
Google Scholar
Henkel, M.: Conformal Invariance and Critical Phenomena. Berlin-Heidelberg-New York: Springer, 1999
Hongler, C.: Conformal invariance of Ising model correlations. PhD thesis, 2010
Kadanoff L.P.: Correlations along a line in the two-dimensional Ising model. Phys. Rev. 188, 859–863 (1969)
ADS
Article
Google Scholar
Kesten H.: Scaling relations for 2D-percolation. Commun. Math. Phys. 109(1), 109–156 (1987)
ADS
Article
MATH
MathSciNet
Google Scholar
Laanait L., Messager A., Miracle-Solé S., Ruiz J., Shlosman S.: Interfaces in the Potts model. I. Pirogov–Sinai theory of the Fortuin-Kasteleyn representation. Commun. Math. Phys. 140(1), 81–91 (1991)
ADS
Article
MATH
Google Scholar
Lawler, G.F., Schramm, O., Werner, W.: One-arm exponent for critical 2D percolation. Electron. J. Probab. 7(2) (electronic) (2002)
McCoy B.M., Tracy C.A., Wu T.T.: Painlevé functions of the third kind. J. Math. Phys. 18, 1058–1092 (1977)
ADS
Article
MATH
MathSciNet
Google Scholar
McCoy, B.M., Wu, T.-T.: The two-dimensional Ising model. Cambridge, MA: Harvard University Press, 1973
Messikh, R.: The surface tension near criticality of the 2d-Ising model. http://arxiv.org/abs/math/0610.636v1 [math.PR], 2006
Nolin P.: Near-critical percolation in two dimensions. Electron. J. Probab. 13(55), 1562–1623 (2008)
MATH
MathSciNet
Google Scholar
Nolin P., Werner W.: Asymmetry of near-critical percolation interfaces. J. Amer. Math. Soc. 22(3), 797–819 (2009)
Article
MATH
MathSciNet
Google Scholar
Onsager L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. (2) 65, 117–149 (1944)
ADS
Article
MATH
MathSciNet
Google Scholar
Palmer, J.: Planar Ising correlations. Basel-Boston: Birkhäuser, 2007
Schramm O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000)
Article
MATH
MathSciNet
Google Scholar
Smirnov, S.: Conformal invariance in random cluster models. II. Scaling limit of the interface. In preparation
Smirnov S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3), 239–244 (2001)
ADS
Article
MATH
Google Scholar
Smirnov S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. (2) 172(2), 1435–1467 (2010)
Article
MATH
Google Scholar
Schramm O., Steif J.: Quantitative noise sensitivity and exceptional times for percolation. Ann. Math. 171(2), 619–672 (2010)
Article
MATH
MathSciNet
Google Scholar
Smirnov S., Werner W.: Critical exponents for two-dimensional percolation. Math. Res. Lett. 8(5-6), 729–744 (2001)
Article
MATH
MathSciNet
Google Scholar
Tracy C.A.: Asymptotics of a τ-function arising in the two-dimensional Ising model. Commun. Math. Phys. 142, 297–311 (1991)
ADS
Article
MATH
MathSciNet
Google Scholar
Werner, W.: Lectures on two-dimensional critical percolation. IAS Park City Graduate Summer School, 2007. http://arxiv.org/abs/0710.0856v3 [math.PR], 2008
Werner, W.: Private communication, 2009
Werner, W.: Percolation et modèle d’Ising. Volume 16 of Cours Spécialisés [Specialized Courses]. Paris: Soc. Math. de France, 2009
Wu F.Y.: The Potts model. Rev. Mod. Phys. 54(1), 235–268 (1982)
ADS
Article
Google Scholar
Wu T.T., Mc Coy B.M., Tracy C.A., Barouch E.: Spin–spin correlation functions for the two-dimensional Ising model: exact theory in the scaling region. Phys. Rev. B 13, 316–375 (1976)
ADS
Article
Google Scholar
Yang C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. (2) 85, 808–816 (1952)
ADS
Article
MATH
Google Scholar