Abstract
Topological insulators can be characterized alternatively in terms of bulk or edge properties. We prove the equivalence between the two descriptions for two-dimensional solids in the single-particle picture. We give a new formulation of the \({\mathbb{Z}_{2}}\)-invariant, which allows for a bulk index not relying on a (two-dimensional) Brillouin zone. When available though, that index is shown to agree with known formulations. The method also applies to integer quantum Hall systems. We discuss a further variant of the correspondence, based on scattering theory.
Similar content being viewed by others
References
Avila, J.C., Schulz-Baldes, H., Villegas-Blas, C.: Topological invariants of edge states for periodic two-dimensional models. http://arXiv.org/abs/1202.0537v1 [math ph], 2012, to appear in Math. Phys., Anal. Geom
Bernevig B.A., Hughes T.L., Zhang S.-C.: Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006)
Bräunlich G., Graf G.M., Ortelli G.: Equivalence of topological and scattering approaches to quantum pumping. Commun. Math. Phys. 295, 243–259 (2010)
Essin A.M., Gurarie V.: Bulk-boundary correspondence of topological insulators from their Green’s functions. Phys. Rev. B 84, 125132 (2011)
Fröhlich J., Kerler T.: Universality in quantum Hall systems. Nucl. Phys. B 354, 369–417 (1991)
Fröhlich J., Studer U.M.: Gauge invariance and current algebra in nonrelativistic many-body theory. Rev. Mod. Phys 65, 733 (1993)
Fröhlich, J., Studer, U.M., Thiran, E.: Quantum theory of large systems of non-relativistic matter. Les Houches Lectures 1994, London, New York: Elsevier (1995) available at http://arXiv.org/abs/cond-mat/9508062v1, 1995
Fröhlich J., Zee A.: Large scale physics of the quantum Hall fluid. Nucl. Phys. B 364, 517–540 (1991)
Fu L., Kane C.L.: Time reversal polarization and a Z 2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006)
Fujita M., Wakabayashi K., Nakada K., Kusakabe K.: Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920–1923 (1996)
Haldane F.D.M: Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988)
Hasan M.Z., Kane C.L.: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)
Hatsugai Y.: Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697 (1993)
Hatsugai Y., Ryu S.: Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002)
Hsieh D., Qian D., Wray L., Xia Y., Hor Y.S., Cava R.J., Hasan M.Z.: A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970 (2008)
Kane C.L., Mele E.J.: Z 2 Topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)
Kato, T.: Perturbation Theory for Linear Operators. Berlin-Heidelberg-New York: Springer-Verlag, 1980
Kohn W.: Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 115, 809–821 (1959)
König M., Wiedmann S., Brüne C., Roth A., Buhmann H., Molenkamp L.W., Qi X.-L., Zhang S.-C.: Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766 (2007)
Moore J.E., Balents L.: Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306(R) (2007)
Nakada K., Fujita M., Dresselhaus G., Dresselhaus M.S.: Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B. 54, 17954 (1996)
Nakahara, M.: Geometry, Topology and Physics. Graduate Student Series in Physics, London: Institute of Physics Publishing, 1990
Pfeffer W.F.: More on involutions of a circle. Amer. Math. Monthly 81, 613 (1974)
Prodan E.: Robustness of the spin-Chern number. Phys. Rev. B 80, 125327 (2009)
Qi X.-L., Wu Y.-S., Zhang S.-C.: Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B 74, 085308 (2006)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics, III. Scattering Theory. New York: Academic Press, 1979
Roy R.: Z 2 classification of quantum spin Hall systems: An approach using time-reversal invariance. Phys. Rev. B 79, 195321 (2009)
Schulz-Baldes H., Kellendonk J., Richter T.: Simultaneous quantization of edge and bulk Hall conductivity. J. Phys. A: Math. Gen. 33, L27 (2000)
Sheng D.N., Weng Z.Y., Sheng L., Haldane F.D.M.: Quantum spin-Hall effect and topologically invariant Chern numbers. Phys. Rev. Lett. 97, 036808 (2006)
Thouless D.J.: Quantisation of particle transport. Phys. Rev. B 27, 6083–6087 (1983)
Wen X.G.: Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990)
Zhang S.-C.: The Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect. Int. J. Mod. Phys. B 6, 25–58 (1992)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Aizenman
Rights and permissions
About this article
Cite this article
Graf, G.M., Porta, M. Bulk-Edge Correspondence for Two-Dimensional Topological Insulators. Commun. Math. Phys. 324, 851–895 (2013). https://doi.org/10.1007/s00220-013-1819-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-013-1819-6