Avila, J.C., Schulz-Baldes, H., Villegas-Blas, C.: Topological invariants of edge states for periodic two-dimensional models. http://arXiv.org/abs/1202.0537v1 [math ph], 2012, to appear in Math. Phys., Anal. Geom
Bernevig B.A., Hughes T.L., Zhang S.-C.: Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006)
ADS
Article
Google Scholar
Bräunlich G., Graf G.M., Ortelli G.: Equivalence of topological and scattering approaches to quantum pumping. Commun. Math. Phys. 295, 243–259 (2010)
ADS
Article
MATH
Google Scholar
Essin A.M., Gurarie V.: Bulk-boundary correspondence of topological insulators from their Green’s functions. Phys. Rev. B 84, 125132 (2011)
ADS
Article
Google Scholar
Fröhlich J., Kerler T.: Universality in quantum Hall systems. Nucl. Phys. B 354, 369–417 (1991)
ADS
Article
Google Scholar
Fröhlich J., Studer U.M.: Gauge invariance and current algebra in nonrelativistic many-body theory. Rev. Mod. Phys 65, 733 (1993)
ADS
Article
Google Scholar
Fröhlich, J., Studer, U.M., Thiran, E.: Quantum theory of large systems of non-relativistic matter. Les Houches Lectures 1994, London, New York: Elsevier (1995) available at http://arXiv.org/abs/cond-mat/9508062v1, 1995
Fröhlich J., Zee A.: Large scale physics of the quantum Hall fluid. Nucl. Phys. B 364, 517–540 (1991)
ADS
Article
Google Scholar
Fu L., Kane C.L.: Time reversal polarization and a Z
2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006)
ADS
Article
Google Scholar
Fujita M., Wakabayashi K., Nakada K., Kusakabe K.: Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920–1923 (1996)
ADS
Article
Google Scholar
Haldane F.D.M: Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988)
MathSciNet
ADS
Article
Google Scholar
Hasan M.Z., Kane C.L.: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)
ADS
Article
Google Scholar
Hatsugai Y.: Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697 (1993)
MathSciNet
ADS
Article
MATH
Google Scholar
Hatsugai Y., Ryu S.: Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002)
ADS
Article
Google Scholar
Hsieh D., Qian D., Wray L., Xia Y., Hor Y.S., Cava R.J., Hasan M.Z.: A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970 (2008)
ADS
Article
Google Scholar
Kane C.L., Mele E.J.: Z
2 Topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)
ADS
Article
Google Scholar
Kato, T.: Perturbation Theory for Linear Operators. Berlin-Heidelberg-New York: Springer-Verlag, 1980
Kohn W.: Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 115, 809–821 (1959)
MathSciNet
ADS
Article
MATH
Google Scholar
König M., Wiedmann S., Brüne C., Roth A., Buhmann H., Molenkamp L.W., Qi X.-L., Zhang S.-C.: Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766 (2007)
ADS
Article
Google Scholar
Moore J.E., Balents L.: Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306(R) (2007)
ADS
Article
Google Scholar
Nakada K., Fujita M., Dresselhaus G., Dresselhaus M.S.: Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B. 54, 17954 (1996)
ADS
Article
Google Scholar
Nakahara, M.: Geometry, Topology and Physics. Graduate Student Series in Physics, London: Institute of Physics Publishing, 1990
Pfeffer W.F.: More on involutions of a circle. Amer. Math. Monthly 81, 613 (1974)
MathSciNet
Article
MATH
Google Scholar
Prodan E.: Robustness of the spin-Chern number. Phys. Rev. B 80, 125327 (2009)
ADS
Article
Google Scholar
Qi X.-L., Wu Y.-S., Zhang S.-C.: Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B 74, 085308 (2006)
ADS
Article
Google Scholar
Reed, M., Simon, B.: Methods of Modern Mathematical Physics, III. Scattering Theory. New York: Academic Press, 1979
Roy R.: Z
2 classification of quantum spin Hall systems: An approach using time-reversal invariance. Phys. Rev. B 79, 195321 (2009)
ADS
Article
Google Scholar
Schulz-Baldes H., Kellendonk J., Richter T.: Simultaneous quantization of edge and bulk Hall conductivity. J. Phys. A: Math. Gen. 33, L27 (2000)
MathSciNet
ADS
Article
MATH
Google Scholar
Sheng D.N., Weng Z.Y., Sheng L., Haldane F.D.M.: Quantum spin-Hall effect and topologically invariant Chern numbers. Phys. Rev. Lett. 97, 036808 (2006)
ADS
Article
Google Scholar
Thouless D.J.: Quantisation of particle transport. Phys. Rev. B 27, 6083–6087 (1983)
MathSciNet
ADS
Article
Google Scholar
Wen X.G.: Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990)
ADS
Article
Google Scholar
Zhang S.-C.: The Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect. Int. J. Mod. Phys. B 6, 25–58 (1992)
ADS
Article
Google Scholar