Abstract
We study the cumulants and their generating functions of the probability distributions of the conductance, shot noise and Wigner delay time in ballistic quantum dots. Our approach is based on the integrable theory of certain matrix integrals and applies to all the symmetry classes \({\beta \in \{1, 2, 4\}}\) of Random Matrix Theory. We compute the weak localization corrections to the mixed cumulants of the conductance and shot noise for β = 1, 4, thus proving a number of conjectures of Khoruzhenko et al. (in Phys Rev B 80:(12)125301, 2009). We derive differential equations that characterize the cumulant generating functions for all \({\beta \in \{1, 2, 4 \} }\). Furthermore, when β = 2 we show that the cumulant generating function of the Wigner delay time can be expressed in terms of the Painlevé III′ transcendant. This allows us to study properties of the cumulants of the Wigner delay time in the asymptotic limit \({n \to \infty}\). Finally, for all the symmetry classes and for any number of open channels, we derive a set of recurrence relations that are very efficient for computing cumulants at all orders.
This is a preview of subscription content, access via your institution.
References
Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. New York: Dover Publications Inc., 1972
Adler M., Shiota T., Moerbeke P.: Random matrices, vertex operators and the Virasoro algebra. Phys. Lett. A 208(1–2), 67–78 (1995)
Adler M., Shiota T., Moerbeke P.: Random matrices, Virasoro algebras, and noncommutative KP. Duke Math. J. 94(2), 379–431 (1998)
Adler M., Shiota T., Moerbeke P.: Pfaff \({\tau}\) -functions. Math. Ann. 322(3), 423–476 (2002)
Adler M., Moerbeke P.: Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials. Duke Math. J. 80(3), 863–911 (1995)
Adler M., Moerbeke P.: Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum. Ann. Math. (2) 153(1), 149–189 (2001)
Adler M., Moerbeke P.: Integrals over classical groups, random permutations, Toda and Toeplitz lattices. Commun. Pure Appl. Math. 54(2), 153–205 (2001)
Adler M., Moerbeke P.: Toda versus Pfaff lattice and related polynomials. Duke Math. J. 112(1), 1–58 (2002)
Altland A., Zirnbauer M.R.: Random matrix theory of a chaotic Andreev quantum dot. Phys. Rev. Lett. 76(18), 3420–3423 (1996)
Altland A., Zirnbauer M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55(2), 1142–1161 (1997)
Altshuler B.L.: Fluctuations in the extrinsic conductivity of disordered conductors. JETP Lett. 41(12), 648–651 (1985)
Baranger H.U., Mello P.A.: Mesoscopic transport through chaotic cavities: A random S-matrix theory approach. Phys. Rev. Lett. 73(1), 142–145 (1994)
Beenakker C.W.J.: Universality in the random-matrix theory of quantum transport. Phys. Rev. Lett. 70(8), 1155–1158 (1993)
Beenakker C.W.J.: Random-matrix theory of quantum transport. Rev. Mod. Phys. 69(3), 731–808 (1997)
Berkolaiko, G., Harrison, J., Novaes, M.: Full counting statistics of chaotic cavities from classical action correlations. J. Phys. A: Math. Theor. 41(36), 365102 (2008) (12pp)
Berkolaiko, G., Kuipers, J.: Moments of the Wigner delay times. J. Phys. A: Math. Theor. 43(3), 035101 (2010) (18pp)
Berkolaiko, G., Kuipers, J.: Transport moments beyond the leading order. New J. Phys. 13(6), 063020 (2011) (40pp)
Berkolaiko G., Kuipers J.: Universality in chaotic quantum transport: The concordance between random-matrix and semiclassical theories. Phys. Rev. E 85(4), 045201 (2012)
Berry M.V.: Semiclassical theory of spectral rigidity. Proc. R. Soc. Lond. A 400(1819), 229–251 (1985)
Blümel R., Smilansky U.: Classical irregular scattering and its quantum-mechanical implications. Phys. Rev. Lett. 60(6), 477–480 (1988)
Blümel R., Smilansky U.: Random-matrix description of chaotic scattering: Semiclassical approach. Phys. Rev. Lett. 64(3), 241–244 (1990)
Bohigas O., Giannoni M.J., Schmit C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52(1), 1–4 (1984)
Borot, G., Guionnet, A.: Asymptotic expansion of β matrix models in the multi-cut regime, http://arxiv.org/abs/1303.1045v2 [math-ph], 2013
Borot G., Guionnet A.: Asymptotic expansion of β matrix models in the one-cut regime. Commun. Math. Phys. 317(2), 447–483 (2013)
Braun P., Heusler S., Müller S., Haake F.: Semiclassical prediction for shot noise in chaotic cavities. J. Phys. A: Math. Gen. 39(11), L159–L165 (2006)
Brouwer P.W., Frahm K.M., Beenakker C.W.J.: Quantum mechanical time-delay matrix in chaotic scattering. Phys. Rev. Lett. 78(25), 4737–4740 (1997)
Chen Y., Its A.: Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I. J. Approx. Theor. 162(2), 270–297 (2010)
Cosgrove C.M.: Chazy classes IX-XI of third-order differential equations. Stud. Appl. Math. 104(3), 171–228 (2000)
Cosgrove C.M., Scoufis G.: Painlevé classification of a class of differential equations of the second order and second degree. Stud. Appl. Math. 88(1), 25–87 (1993)
Dahlhaus J.P., Béri B., Beenakker C.W.J.: Random-matrix thory of thermal conduction in superconducting quantum dots. Phys. Rev. B 82(1), 014536 (2010)
Diaconis P., Evans S.N.: Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc. 353(7), 2615–2633 (2001)
Diaconis P., Shahshahani M.: On the eigenvalues of random matrices. J. Appl. Probab. 31, 49–62 (1994)
Dueñez E.: Random matrix ensembles associated to compact symmetric spaces. Commun. Math. Phys. 244(1), 29–61 (2004)
Dumitriu I., Edelman A.: Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models. J. Math. Phys. 47(6), 063302 (2006)
Dumitriu, I., Paquette, E.: Global fluctuations for linear statistics of β-Jacobi ensembles. Random Matrices: Theo. Appl. 1(4), 1250013 (2012) (60 pp)
Forrester P.J.: Evenness symmetry and inter-relationships between gap probabilities in random matrix theory. Forum Math. 18(5), 711–743 (2006)
Forrester P.J.: Quantum conductance problems and the Jacobi ensemble. J. Phys. A: Math. Gen. 39(22), 6861–6870 (2006)
Forrester, P.J.: Log-gases and random matrices. Priceton, NJ: Princeton University Press, 2010
Fyodorov Y.V., Savin DV., Sommers H.-J.: Parametric correlations of phase shifts and statistics of time delays in quantum chaotic scattering: Crossover between unitary and orthogonal symmetries. Phys. Rev. E 55(5), R4857–R4860 (1997)
Fyodorov Y.V., Sommers H.-J.: Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance. J. Math. Phys. 38(4), 1918–1981 (1997)
Garoufalidis S., Its A., Kapaev A., Mariño M.: Asymptotics of the instantons of Painlevé I. Int. Math. Res. Not. 2012(3), 561–606 (2012)
Gerasimov A., Marshakov A., Mironov A., Morozov A., Orlov A.: Matrix models of two-dimensional gravity and Toda theory. Nucl. Phys. B 357, 565–618 (1991)
Heusler S., Müller S., Braun P., Haake F.: Semiclassical theory of chaotic conductors. Phys. Rev. Lett. 96, 066804 (2006)
Hone A.N.W., Joshi N., Kitaev A.V.: An entire function defined by a nonlinear recurrence relation. J. Lond. Math. Soc. (2) 66(2), 377–387 (2002)
Iida S., Weidenmüller H.A., Zuk J.A.: Statistical scattering-theory, the supersymmetry method and universal conductance fluctuations. Ann. Phys. 200(2), 219–270 (1990)
Iida S., Weidenmüller H.A., Zuk J.A.: Wave propagation through disordered media and universal conductance fluctuations. Phys. Rev. Lett. 64(5), 583–586 (1990)
Jalabert R.A., Pichard J.-L., Beenakker C.W.J.: Universal quantum signatures of chaos in ballistic transport. EPL 27(4), 255–260 (1994)
Johansson K.: On random matrices from the compact classical groups. Ann. of Math. (2) 145(3), 519–545 (1997)
Johansson K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)
Joshi N., Kitaev A.V.: On Boutroux’s tritronquée solutions of the first Painlevé equation. Stud. Appl. Math. 107, 253–291 (2001)
Khoruzhenko B.A., Savin D.V., Sommers H.-J.: Systematic approach to statistics of conductance and shot-noise in chaotic cavities. Phys. Rev. B 80(12), 125301 (2009)
Kriecherbauer, T., Shcherbina, M.: Fluctuations of eigenvalues of matrix models and their applications, http://arxiv.org/abs/1003.6121v1 [math-ph], 2010
Kuipers J., Engl T., Berkolaiko G., Petitjean C., Waltner D., Richter K.: Density of states of chaotic Andreev billiards. Phys. Rev. B 83(19), 195316 (2011)
Kuipers J., Sieber M.: Semiclassical expansion of parametric correlation functions of the quantum time delay. Nonlinearity 20(4), 909–926 (2007)
Kuipers J., Sieber M.: Semiclassical relation between open trajectories and periodic orbits for the Wigner time delay. Phys. Rev. E 77(4), 046219 (2008)
Kumar S., Pandey A.: Conductance distributions in chaotic mesoscopic cavities. J. Phys. A: Math. Theor. 43(28), 285101 (2010)
Kumar S., Pandey A.: Jacobi crossover ensembles of random matrices and statistics of transmission eigenvalues. J. Phys. A: Math. Theor. 43(8), 085001 (2010)
Lee P.A., Stone A.D.: Universal conductance fluctuations in metals. Phys. Rev. Lett. 5515, 1622–1625 (1985)
Lehmann N., Savin D.V., Sokolov V.V., Sommers H.-J.: Time delay correlations in chaotic scattering: random matrix approach. Physica D 86(4), 572–585 (1995)
Lewenkopf C.H., Vallejos R.O.: Open orbits and the semiclassical dwell time. J. Phys. A: Math. Gen. 37(1), 131–136 (2004)
Livan G., Vivo P.: Moments of Wishart-Laguerre and Jacobi ensembles of random matrices: application to the quantum transport problem in chaotic cavities. Acta Phys. Pol. B 42(5), 1081–1104 (2011)
Lozano A., Tulino A.M., Verdú S.: Multiple-antenna capacity in the low-power regime. IEEE Trans. Infor. Theo. 49(10), 2527–2544 (2003)
Mehta, M.L.: Random matrices. Third ed., San Diego, CA: Elsevier Inc., 2004
Mezzadri F., Simm N.J.: Moments of the transmission eigenvalues, proper delay times and random matrix theory. I. J. Math. Phys. 52(10), 103511 (2011)
Mezzadri, F., Simm, N.J.: Moments of the transmission eigenvalues, proper delay times and random matrix theory II. J. Math. Phys. 53(5), 053504 (2012) (42pp)
Mironov A., Morozov A.: On the origin of Virasoro constraints in matrix models: Lagrangian approach. Phys. Lett. B. 252, 47–52 (1990)
Müller S., Heusler S., Braun P., Haake F., Altland A.: Semiclassical foundation of universality in quantum chaos. Phys. Rev. Lett. 93(1), 014103 (2004)
Müller S., Heusler S., Braun P., Haake F., Altland A.: Periodic-orbit theory of universality in quantum chaos. Phys. Rev. E 72(4), 046207 (2005)
Novaes M.: Full counting statistics of chaotic cavities with many open channels. Phys. Rev. B 75(7), 073304 (2007)
Novaes M.: Statistics of quantum transport in chaotic cavities with broken time-reversal symmetry. Phys. Rev. B 78(3), 035337 (2008)
Osipov V.A., Kanzieper E.: Are bosonic replicas faulty?. Phys. Rev. Lett. 99(5), 050602 (2007)
Osipov V.A., Kanzieper E.: Integrable theory of quantum transport in chaotic cavities. Phys. Rev. Lett. 101(17), 176804 (2008)
Osipov V.A., Kanzieper E.: Statistics of thermal to shot noise crossover in chaotic cavities. J. Phys. A: Math. Theor. 42(47), 475101 (2009)
Politzer H.D.: Random-matrix description of the distribution of mesoscopic conductance. Phys. Rev. B 40(17), 917–919 (1989)
Richter K., Sieber M.: Semiclassical theory of chaotic quantum transport. Phys. Rev. Lett. 89(20), 206801 (2002)
Savin D.V., Fyodorov Y.V., Sommers H.-J.: Reducing nonideal to ideal coupling in random matrix description of chaotic scattering: Application to the time-delay problem. Phys. Rev. E 63(3), 035202 (2001)
Savin D.V., Sommers H.-J.: Delay times and reflection in chaotic cavities with absorption. Phys. Rev. E 68(3), 036211 (2003)
Savin D.V., Sommers H.-J.: Shot noise in chaotic cavities with an arbitrary number of open channels. Phys. Rev. B 73(8), 081307 (2006)
Savin D.V., Sommers H.-J., Wieczorek W.: Nonlinear statistics of quantum transport in chaotic cavities. Phys. Rev. B 77(12), 125332 (2008)
Sommers H.-J., Savin D.V., Sokolov V.V.: Distribution of proper delay times in quantum chaotic scattering: A crossover from ideal to weak coupling. Phys. Rev. Lett. 87(9), 094101 (2001)
Sommers H.-J., Wieczorek W., Savin D.V.: Statistics of conductance and shot-noise power for chaotic cavities. Acta Phys. Pol. A 112(4), 691–697 (2007)
Texier C., Majumdar S.N.: Wigner time-delay distribution in chaotic chavities and freezing transition. Phys. Rev. Lett. 110, 250–602 (2013)
Tu M.H., Shaw J.C., Yen H.C.: A note on integrability in matrix models. Chinese J. Phys. 34(5), 1211–1220 (1996)
Vallejos R.O., Lewenkopf C.H.: On the semiclassical theory for universal transmission fluctuations in chaotic systems: the importance of unitarity. J. Phys. A: Math. Gen. 34(13), 2713–2721 (2001)
Vallejos R.O., Ozoriode Almeida A.M., Lewenkopf C.H.: Quantum time delay in chaotic scattering: a semiclassical approach. J. Phys. A: Math. Gen. 31(21), 4885–4897 (1998)
Vidal P., Kanzieper E.: Statistics of reflection eigenvalues in chaotic cavities with nonideal leads. Phys. Rev. Lett. 108(20), 206806 (2012)
Vivo P., Majumdar S.N., Bohigas O.: Distributions of conductance and shot noise and associated phase transitions. Phys. Rev. Lett. 101(21), 216809 (2008)
Vivo P., Majumdar S.N., Bohigas O.: Probability distributions of linear statistics in chaotic cavities and associated phase transitions. Phys. Rev. B 81(10), 104202 (2010)
Washburn S., Webb R.A.: Aharonov-Bohm effect in normal metal quantum coherence and transport. Adv. Phys. 35(4), 375–422 (1986)
Witte N.S., Forrester P.J., Cosgrove C.M.: Gap probabilities for edge intervals in finite Gaussian and Jacobi unitary matrix ensembles. Nonlinearity 13(5), 1439–1464 (2000)
Zirnbauer M.R.: Riemannian symmetric superspaces and their origin in random-matrix theory. J. Math. Phys. 37(10), 4986–5018 (1996)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Deift
Research partially supported by EPSRC, grant no: EP/G019843/1.
Rights and permissions
About this article
Cite this article
Mezzadri, F., Simm, N.J. Tau-Function Theory of Chaotic Quantum Transport with β = 1, 2, 4. Commun. Math. Phys. 324, 465–513 (2013). https://doi.org/10.1007/s00220-013-1813-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-013-1813-z
Keywords
- Recurrence Relation
- Quantum Channel
- Shot Noise
- Moment Generate Function
- Symmetry Class