Skip to main content
Log in

Scattering Phase Asymptotics with Fractal Remainders

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a Riemannian manifold (M, g) which is isometric to the Euclidean space outside of a compact set, and whose trapped set has Liouville measure zero, we prove Weyl type asymptotics for the scattering phase with remainder depending on the classical escape rate and the maximal expansion rate. For Axiom A geodesic flows, this gives a polynomial improvement over the known remainders. We also show that the remainder can be bounded above by the number of resonances in some neighbourhoods of the real axis, and provide similar asymptotics for hyperbolic quotients using the Selberg zeta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bérard P.: On the wave equation on a compact manifold without conjugate points. Math. Z. 155(3), 249–276 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birman, M.S., Krein, M.G.: On the theory of wave operators and scattering operators. Dokl. Akad. Nauk SSSR 144, 475–478 (1962); English translation in Sov. Math. Dokl 3, Providence, RI: Amer. Math. Soc., 1962

  3. Borthwick D.: Upper and lower bounds on resonances for manifolds hyperbolic near infinity. Comm. PDE 33, 1507–1539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borthwick D., Judge C., Perry P.: Selberg’s zeta function and the spectral geometry of geometrically finite hyperbolic surfaces. Comment. Math. Helv. 80(3), 483–515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bowen R., Ruelle D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bruneau V., Petkov V.: Meromorphic continuation of the spectral shift function. Duke Math. J 116(3), 389–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buslaev, V.S.: Local spectral asymptotic behavior of the Green’s function in exterior problems for the Schrödinger operator. (Russian. English summary) Collection of articles dedicated to the memory of Academician V. I. Smirnov. Vestnik Leningad. Univ. No. 1 Mat. Meh. Astronom. Vyp. 1, 55–60 (1975)

  8. Christiansen T.: Spectral asymptotics for compactly supported perturbations of the Laplacian on \({{\mathbb{R}}^{n}}\). Comm. PDE 23(5–6), 933–948 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dimassi M.: Spectral shift function and resonances for slowly varying perturbations of periodic Schrdinger operators. J. Funct. Anal. 225(1), 193–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dimassi, M., Sjöstrand, J.: Spectral asymptotics in the semi-classical limit. Cambridge: Cambridge University Press, 1999

  11. Dyatlov, S., Guillarmou, C.: Microlocal limits of plane waves and Eisenstein functions. Ann. de l’ENS. http://arxiv.org/abs/1204.1305v1 [math.AP], (2012, to appear)

  12. Graham C.R.: Volume and area renormalizations for conformally compact Einstein metrics. Rend. Circ. Mat. Palermo, Ser.II, Suppl. 63, 31–42 (2000)

    Google Scholar 

  13. Guillarmou C.: Generalized Krein formula, determinants and Selberg zeta function in even dimension. Amer. J. Math. 131(5), 1359–1417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guillopé L., Lin K., Zworski M.: The Selberg zeta function for convex co-compact Schottky groups. Commun. Math. Phys. 245(1), 149–176 (2004)

    Article  ADS  MATH  Google Scholar 

  15. Guillopé L., Zworski M.: Scattering asymptotics for Riemann surfaces. Ann. Math. 145, 597–660 (1997)

    Article  MATH  Google Scholar 

  16. Helffer B., Robert D.: Calcul fonctionnel par la transformée de Mellin et opérateurs admissibles. J. Func. Anal. 53(3), 246–268 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Pseudo-differential Operators. Berlin-Heidelberg-New york: Springer, 1985

  18. Ivrii V.: The second term of the spectral asymptotics for a Laplace Beltrami operator on manifolds with boundary. Funkt. Anal. i Pril. 14(2), 25–34 (1980)

    MathSciNet  Google Scholar 

  19. Jakobson D., Naud F.: Lower bounds for resonances of infinite area Riemann surfaces. Analysis and PDE 3(2), 207–225 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jensen A., Kato T.: Asymptotic behavior of the scattering phase for exterior domains. Comm. PDE 3(12), 1165–1195 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Majda A., Ralston J.: An analogue of Weyl’s theorem for unbounded domains. I. Duke Math J. 45(1), 183–196 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Majda A., Ralston J.: An analogue of Weyl’s theorem for unbounded domains. II. Duke Math J. 45(3), 513–536 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazzeo R.R., Melrose R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Melrose R.B.: Polynomial bound on the number of scattering poles. J. Funct. Anal. 53(3), 287–303 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Melrose R.B.: Weyl asymptotics for the phase in obstacle scattering. Comm. PDE 13(11), 1431–1439 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Patterson S.J.: The limit set of a Fuchsian group. Acta Math. 136(3–4), 241–273 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Patterson S., Perry P.: The divisor of Selberg’s zeta function for Kleinian groups. Appendix A by Charles Epstein. Duke Math. J. 106, 321–391 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Petkov V., Popov G.: Asymptotic behaviour of the scattering phase for non-trapping obstacles. Ann. Inst. Fourier 32, 111–149 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Petkov V., Zworski M.: Breit–Wigner approximation and distribution of resonances. Commun. Math. Phys. 204, 329–351 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Robert D.: Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du laplacien. Ann. Sci. École Norm. Sup. (4) 25(4), 107–134 (1992)

    MATH  Google Scholar 

  31. Sjöstrand J.: Geometric bounds on the density of resonances for semiclassical problems. Duke Math. J. 60(1), 1–57 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sjöstrand, J.: A trace formula and review of some estimates for resonances. In: Microlocal analysis and spectral theory (Lucca 1997), NATA Adv. Sci. Inst. Ser. C Math. Phys Sci., 490, Dordrecht: Kluwer Acad. Publ., 1997, pp. 377–437

  33. Sjöstrand J., Zworski M.: Complex scaling and the distribution of resonances. J. Amer. Math. Soc. 4, 729–769 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sjöstrand J., Zworski M.: Lower bounds on the number of scattering poles, II. J. Funct. Anal. 123, 336–367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sjöstrand J., Zworski M.: Fractal upper bounds on the density of semiclassical resonances. Duke Math. J. 137(3), 381–459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sullivan D.: The density at infinity of a discrete group of hyperbolic motions. Publ. Math. de l’IHES 50, 171–202 (1979)

    Article  MATH  Google Scholar 

  37. Titchmarsh, E.C.: The theory of the Riemann zeta function. Second edition. Oxford: Clarendon Press, 1986

  38. Vodev G.: Sharp polynomial bound on the number of scattering poles for metric perturbations of the Laplacian in \({{\mathbb{R}}^n}\). Math. Ann. 291, 39–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Young L.S.: Some large deviation results for dynamical systems. Trans. Amer. Math. Soc. 318(2), 325–343 (1990)

    Google Scholar 

  40. Zworski, M.: Poisson formulae for resonances. Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, Exp. No. XIII, 1997

  41. Zworski, M.: Semiclassical analysis. Graduate Studies in Mathematics, 138. Providence, RI: Amer. Math. Soc., 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semyon Dyatlov.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyatlov, S., Guillarmou, C. Scattering Phase Asymptotics with Fractal Remainders. Commun. Math. Phys. 324, 425–444 (2013). https://doi.org/10.1007/s00220-013-1809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1809-8

Keywords

Navigation