Abstract
We prove special decay properties of solutions to the initial value problem associated to the k-generalized Korteweg-de Vries equation. These are related with persistence properties of the solution flow in weighted Sobolev spaces and with sharp unique continuation properties of solutions to this equation. As an application of our method we also obtain results concerning the decay behavior of perturbations of the traveling wave solutions as well as results for solutions corresponding to special data.
Similar content being viewed by others
References
Bergh, J., Löfström, J.: Interpolation spaces. New York and Berlin: Springer, 1970
Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I, II. Geom. Funct. Anal. 3, 107–156, 209–262 (1993)
Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Sharp global wellposedness results for periodic and non-periodic KdV and modified KdV on \({{\mathbb{R}}}\) and \({{\mathbb{T}}}\) . J. Amer. Math. Soc. 16, 705–749 (2003)
Escauriaza L., Kenig C.E., Ponce G., Vega L.: On Uniqueness Properties of Solutions of the k-generalized KdV. J. Funct. Anal. 244(2), 504–535 (2007)
Ginibre J., Tsutsumi Y.: Uniqueness for the generalized Korteweg-de Vries equations. SIAM J. Math Anal. 20, 1388–1425 (1989)
Grünrock A.: A bilinear Airy type estimate with application to the 3-gkdv equation. Diff. Int. Eqs. 18, 1333–1339 (2005)
Grünrock A., Panthee M., Drumond Silva J.: A remark on global well-posedness below L 2 for the gKdV-3 equation. Diff. Int. Eqs. 20, 1229–1236 (2007)
: On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Adv. in Math. Suppl. Studies, Studies in App. Math. 8, 93–128 (1983)
Kenig C.E., Ponce G., Vega L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle. Comm. Pure Appl. Math. 46, 527–620 (1993)
Kenig C.E., Ponce G., Vega L.: A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9, 573–603 (1996)
Kruzhkov S.N., Faminskii A.V.: Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation. Math. U.S.S.R. Sbornik 48, 93–138 (1984)
Nahas J., Ponce G.: On the persistent properties of solutions to semi-linear Schrödinger equation. Comm. P.D.E. 34, 1–20 (2009)
Nahas, J., Ponce, G.: On the well-posedness of the modified Korteweg-de Vries equation in weighted Sobolev spaces Preprint, available at http://www.math.ucsb.edu/~ponce/jnjpz.pdf
Robbiano L.: Unicité forte à l’infini pour KdV. Control Opt. and Cal. Var. 8, 933–939 (2002)
Tao T.: Scattering for the quartic generalized Korteweg-de Vries equation. J. Diff. Eqs. 232, 623–651 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by W. Schlag
Rights and permissions
About this article
Cite this article
Isaza, P., Linares, F. & Ponce, G. On Decay Properties of Solutions of the k-Generalized KdV Equation. Commun. Math. Phys. 324, 129–146 (2013). https://doi.org/10.1007/s00220-013-1798-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-013-1798-7