Abstract
We consider a two-dimensional lattice model for liquid crystals consisting of long rods interacting via purely hard core interactions, with two allowed orientations defined by the underlying lattice. We rigorously prove the existence of a nematic phase, i.e., we show that at intermediate densities the system exhibits orientational order, either horizontal or vertical, but no positional order. The proof is based on a two-scales cluster expansion: we first coarse grain the system on a scale comparable with the rods’ length; then we express the resulting effective theory as a contour’s model, which can be treated by Pirogov-Sinai methods.
Similar content being viewed by others
References
Angelescu N., Zagrebnov V.A.: A Lattice Model of Liquid Crystals with Matrix Order Parameter. J. Phys. A 15, L639–L642 (1982)
Angelescu N., Romano S., Zagrebnov V.A.: On Long-Range Order in Low-Dimensional Lattice-Gas Models of Nematic Liquid Crystals. Phys. Lett. A 200, 433–437 (1995)
Blinc, R., Zeks, B.: Soft Modes in Ferroelectrics and Antiferroelectrics. Amsterdam: North-Holland, (1974)
Borgs C., Imbrie J.Z.: A Unified Approach to Phase Diagrams in Field Theory and Statistical Mechanics. Commun. Math. Phys. 123, 305–328 (1989)
Bricmont J., Kuroda K., Lebowitz J.L.: The structure of Gibbs states and phase coexistence for nonsymmetric continuum Widom-Rowlinson models. Z. Wahrsch. Verw. Geb. 67, 121–138 (1984)
Brydges, D.C.: A short course on cluster expansions. In: K. Osterwalder, R. Stora, eds., “Critical Phenomena, Random Systems, Gauge Theories”, Les Houches Summer School, Amsterdam-New York:North Holland, 1984, pp. 131183
de Gennes P.G., Prost J.: The Physics of Liquid Crystals. Oxford University Press, Oxford (1993)
Dhar D., Rajesh R., Stilck J.F.: Hard rigid rods on a Bethe-like lattice. Phys. Rev. E 84, 011140 (2011)
Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)
Fischer T., Vink R.L.C.: Restricted orientation “liquid crystal” in two dimensions: Isotropic-nematic transition or liquid-gas one (?). Europhys. Lett. 85, 56003 (2009)
Fröhlich J., Israel R., Lieb E.H., Simon B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)
Fröhlich J., Simon B., Spencer T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95 (1976)
Fröhlich J., Spencer T.: The KosterlitzThouless transition in two-dimensional abelian systems and the Coulomb gas. Commun. Math. Phys. 81, 527602 (1981)
Gallavotti, G., Bonetto, F., Gentile, G.: Aspects of ergodic, qualitative, and statistical theory of motion. Berlin-Heidelberg-New York: Springer, 2004
Ghosh A., Dhar D.: On the orientational ordering of long rods on a lattice. Europhys. Lett. 78, 20003 (2007)
Gruber C., Griffiths R.B.: Phase transition in a ferromagnetic fluid. Physica A 138, 220230 (1986)
Gruber C., Tamura H., Zagrebnov V.A.: Berezinskii–Kosterlitz–Thouless Order in Two-Dimensional O(2)-Ferrofluid. J. Stat. Phys. 106, 875–893 (2002)
Heilmann O.J.: Existence of phase transition in certain lattice gases with repulsive potential. Lett. Nuovo Cim. 3, 95 (1972)
Heilmann, O.J., Lieb, E.H.: Monomers and Dimers. Phys. Rev. Lett. 24, 1412 (1970); Theory of Monomer-Dimer systems. Commun. Math. Phys. 25, 190–232 (1972)
Heilmann O.J., Lieb E.H.: Lattice Models for Liquid Crystals. J. Stat. Phys. 20, 679–693 (1979)
Huckaby D.A.: Phase transitions in lattice gases of hard-core molecules having two orientations. J. Stat. Phys. 17, 371–375 (1977)
Ioffe D., Velenik Y., Zahradnik M.: Entropy-Driven Phase Transition in a Polydisperse Hard-Rods Lattice System. J. Stat. Phys. 122, 761–786 (2006)
Kotecky, R.: Pirogov-Sinai Theory. In: J.-P. Francoise, G.L. Naber, T.S. Tsun, eds, Encyclopedia of Mathematical Physics, Oxford: Elsiever, 2006, pp. 60–65
Kundu, J., Rajesh, R., Dhar, D., Stilck, J.F.: The nematic-disordered phase transition in systems of long rigid rods on two dimensional lattices. Phys. Rev. E 87, 032103 (2013)
Lebowitz J.L., Gallavotti G.: Phase transitions in binary lattice gases. J. Math. Phys. 12, 1129–1133 (1971)
Lebowitz J.L., Penrose O.: Rigorous Treatment of the Van Der Waals Van Der Walls Maxwell Theory of the Liquid-Vapor Transition. J. Math. Phys. 7, 98–113 (1966)
Letawe, I.: Le module de cristaux liquides de Heilmann et Lieb. Mémoire de Licenciée en Sciences, Louvain-la-Neuve:Université Catholique de Louvain, 1994
Lopez L.G., Linares D.H., Ramirez-Pastor A.J.: Critical exponents and universality for the isotropic-nematic phase transition in a system of self-assembled rigid rods on a lattice. Phys. Rev. E 80, 040105(R) (2009)
Lopez L.G., Linares D.H., Ramirez-Pastor A.J., Cannas S.A.: Phase diagram of self-assembled rigid rods on two-dimensional lattices: Theory and Monte Carlo simulations. J. Chem. Phys. 133, 134706 (2010)
Matoz-Fernandez D.A., Linares D.H., Ramirez-Pastor A.J.: Critical behavior of long straight rigid rods on two-dimensional lattices: Theory and Monte Carlo simulations. J. Chem. Phys. 128, 214902 (2008)
Matoz-Fernandez D.A., Linares D.H., Ramirez-Pastor A.J.: Determination of the critical exponents for the isotropic-nematic phase transition in a system of long rods on two-dimensional lattices: Universality of the transition. Europhys. Lett. 82, 50007 (2008)
Matoz-Fernandez D.A., Linares D.H., Ramirez-Pastor A.J.: Critical behavior of long linear k-mers on honeycomb lattices. Phys. A 387, 6513–6525 (2008)
Maier W., Saupe A.: A simple molecular statistical theory of the nematic crystalline-liquid phase. Z. Naturf. 14(A), 882–889 (1959)
Onsager L.: The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51, 627–659 (1949)
Parisi G., Zamponi F.: Mean-field theory of hard sphere glasses and jamming. Rev. Mod. Phys. 82, 789–845 (2010)
Pikin S.A.: Structural Transitions in Liquid Crystals. Nauka, Moscow (1981)
Pirogov, S., Sinai, Ya.: Phase diagrams of classical lattice systems. Theor. Math. Phys. 25, 1185–1192 (1975) and 26, 39–49 (1976)
Ruelle D.: Existence of a Phase Transition in a Continuous Classical System. Phys. Rev. Lett. 27, 1040–1041 (1971)
Ruelle D.: Statistical mechanics: rigorous results. World Scientific, Singapore (1999)
Zagrebnov V.A.: Long-range order in a lattice-gas model of nematic liquid crystals. Physica A 232, 737–746 (1996)
Zahradnik M.: An alternative version of Pirogov-Sinai theory. Commun. Math. Phys. 93, 559–581 (1984)
Zahradnik M.: A short course on the Pirogov-Sinai theory. Rendiconti Math. Serie VII 18, 411–486 (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H. Spohn
Dedicated to the 70 th birthday of Giovanni Gallavotti
Rights and permissions
About this article
Cite this article
Disertori, M., Giuliani, A. The Nematic Phase of a System of Long Hard Rods. Commun. Math. Phys. 323, 143–175 (2013). https://doi.org/10.1007/s00220-013-1767-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-013-1767-1