Abstract
We prove stability of the spectral gap for gapped, frustration-free Hamiltonians under general, quasi-local perturbations. We present a necessary and sufficient condition for stability, which we call Local Topological Quantum Order and show that this condition implies an area law for the entanglement entropy of the groundstate subspace. This result extends previous work by Bravyi et al. on the stability of topological quantum order for Hamiltonians composed of commuting projections with a common zero-energy subspace. We conclude with a list of open problems relevant to spectral gaps and topological quantum order.
Similar content being viewed by others
References
Aharonov, D., Arad, I., Landau, Z., Vazirani, U.: Quantum Hamiltonian complexity and the detectability lemma. http://arxiv.org/abs/1011.3445v5 [quant-ph], 2011
Audenaert K.M.R.: A sharp continuity estimate for the von Neumann entropy. J. Phys. A: Math. Theor. 40, 8127 (2007)
Bachmann S., Michalakis S., Nachtergaele B., Sims R.: Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems. Commun. Math. Phys. 309, 835 (2012)
Borgs C., Kotecký R., Ueltschi D.: Low temperature phase diagrams for quantum perturbations of classical spin systems. Commun. Math. Phys. 181, 409 (1996)
Bravyi S., Haah J.: On the energy landscape of 3D spin Hamiltonians with topological order. Phys. Rev. Lett. 107, 150504 (2011)
Bravyi S., Hastings M.B.: A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307, 609 (2011)
Bravyi S., Hastings M.B., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)
Bravyi S., Hastings M.B., Verstraete F.: Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order. Phys. Rev. Lett. 97, 050401 (2006)
Chen X., Gu Z.-C., Wen X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011)
Datta N., Fernández R., Fröhlich J.: Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states. J. Stat. Phys. 84, 455 (1996)
Datta N., Fernández R., Fröhlich J., Rey-Bellet L.: Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy. Helv. Phys. Acta 69, 752 (1996)
Fannes M.: A continuity property of the entropy density for spin lattice systems. Commun. Math. Phys. 31, 291 (1973)
Fannes M., Nachtergaele B., Werner R.: Finitely Correlated States on Quantum Spin Chains. Commun. Math. Phys. 144, 443 (1992)
Haah J.: Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 83, 042330 (2011)
Hastings M.B.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)
Hastings, M.B.: An area law for one dimensional quantum systems. J. Stat. Mech. 2007, P08024 (2007)
Hastings, M.B.: Quasi-adiabatic Continuation for Disordered Systems: Applications to Correlations, Lieb-Schultz-Mattis, and Hall Conductance. http://arxiv.org/abs/1001.5280v2 [math-ph], 2010
Hastings M.B.: Topological Order at Non-Zero Temperature. Phys. Rev. Lett. 107, 210501 (2011)
Hastings M.B., Koma T.: Spectral Gap and Exponential Decay of Correlations. Commun. Math. Phys. 265, 781 (2006)
Hastings, M.B., Michalakis, S.: Quantization of Hall conductance for interacting electrons without averaging assumptions. http://arxiv.org/abs/0911.4706v1 [math-ph], 2009
Hastings M., Wen X.: Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005)
Ingham A.E.: A note on Fourier Transforms. J. London Math. Soc. 9, 29 (1934)
Kato T.: Continuity of the Map \({S \to |S|}\) for Linear Operators. Proc. Japan Acad. 49, 3 (1973)
Kay A.: Capabilities of a Perturbed Toric Code as a Quantum Memory. Phys. Rev. Lett. 107, 270502 (2011)
Kennedy T., Tasaki H.: Hidden symmetry breaking and the Haldane phase in S = 1 quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)
Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)
Klich I.: On the stability of topological phases on a lattice. Ann. Phys. 325, 2120 (2010)
Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251 (1972)
Nachtergaele B.: The spectral gap for some quantum spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565 (1996)
Nachtergaele B., Ogata Y., Sims R.: Propagation of Correlations in Quantum Lattice Systems. J. Stat. Phys. 124, 1 (2006)
Nachtergaele B., Raz H., Schlein B., Sims R.: Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems. Commun. Math. Phys. 286, 1073 (2009)
Nachtergaele B., Sims R.: Lieb-Robinson Bounds and the Exponential Clustering Theorem. Commun. Math. Phys. 265, 119 (2006)
Nachtergaele, B., Sims, R.: Locality Estimates for Quantum Spin Systems. In: Sidoravicius, V. (ed.) New Trends in Mathematical Physics. Selected contributions of the XVth International Congress on Mathematical Physics, Berlin-Heidelberg-Newyork: Springer Verlag, 2009, pp. 591–614
Nachtergaele, B., Sims, R.: Lieb-Robinson Bounds in Quantum Many-Body Physics. In: Sims, R., Ueltschi, D. (eds), Entropy and the Quantum. Contemporary Mathematics, 529, Providence RI: Amer. Math. Soc., 2010, pp. 141–176
Nussinov Z., Ortiz G.: Autocorrelations and thermal fragility of anyonic loops in topologically quantum ordered systems. Phys. Rev. B 77, 064302 (2008)
Osborne T.J.: Simulating adiabatic evolution of gapped spin systems. Phys. Rev. A 75, 032321 (2007)
Osborne, T.J.: Private communication
Pérez-García D., Verstraete F., Cirac I., Wolf M.: PEPS as unique ground states of local Hamiltonians. Quant. Inf. Comp. 8, 0650 (2008)
Prémont-Schwarz I., Hamma A., Klich I., Markopoulou-Kalamara F.: Lieb-Robinson bounds for commutator-bounded operators. Phys. Rev. A. 81, 040102(R) (2010)
Prémont-Schwarz I., Hnybida J.: Lieb-Robinson bounds on the speed of information propagation. Phys. Rev. A. 81, 062107 (2010)
Sachdev, S.: Quantum phase transitions. Cambridge: Cambridge University Press, 2000
Schuch N., Cirac I., Pérez-García D.: PEPS as ground states: Degeneracy and topology. Ann. Phys. 325, 2153 (2010)
Schuch N., Pérez-García D., Cirac I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84, 165139 (2011)
Spitzer W.L., Starr S.: Improved Bounds on the Spectral Gap Above Frustration-Free Ground States of Quantum Spin Chains. Lett. Math. Phys. 63, 165 (2003)
Stark C., Imamoglu A., Renner R.: Localization of Toric Code Defects. Phys. Rev. Lett. 107, 030504 (2011)
Yarotsky D.: Ground States in Relatively Bounded Quantum Perturbations of Classical Lattice Systems. Commun. Math. Phys. 261, 799 (2006)
Wootton J.R., Pachos J.K.: Bringing Order through Disorder: Localization of Errors in Topological Quantum Memories. Phys. Rev. Lett. 107, 030503 (2011)
Yoshida B.: Feasibility of self-correcting quantum memory and thermal stability of topological order. Ann. Phys. 326, 2566 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. B. Ruskai
Rights and permissions
About this article
Cite this article
Michalakis, S., Zwolak, J.P. Stability of Frustration-Free Hamiltonians. Commun. Math. Phys. 322, 277–302 (2013). https://doi.org/10.1007/s00220-013-1762-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-013-1762-6